篇一 :3直流斩波电路原理实验报告

3直流斩波电路原理实验报告

实 验 报 告

自动化 学院 电力电子 实验室

二〇〇 年 月 日

广东技术师范学院实验报告

实验 (二) 项目名称:直流斩波电路原理实验

1.实验目的和要求

(1)加深理解斩波器电路的工作原理。

(2)掌握斩波器主电路、触发电路的调试步骤和方法。

(3)熟悉斩波器电路各点的电压波形。

2.实验原理

本实验采用脉宽可调的晶闸管斩波器,主电路见下页。其中VT1为主晶闸管,VT2为辅助晶闸管,C和L1构成振荡电路,它们与VD2、VD1、L2组成VT1的换流关断电路。当接通电源时,C经L1、VD1、L2及负载充电至+Ud0,此时VT1、VT2均不导通,当主脉冲到来时,VT1导通,电源电压将通过该晶闸管加到负载上。当辅助脉冲到来时,VT2导通,C通过VT2、L1放电,然后反向充电,其电容的极性从+Ud0变为-Ud0,当充电电流下降到零时,VT2自行关断,此时VT1继续导通。VT2关断后,电容C通过VD1及VT1反向放电,流过VT1的电流开始减小,当流过VT1的反向放电电流与负载电流相同的时候,VT1关断;此时,电容C继续通过VD1、L2、VD2放电,然后经L1、VD1、L2及负载充电至+Ud0,电源停止输出电流,等待下一个周期的触发脉冲到来。VD3为续流二极管,为反电势负载提供放电回路。

…… …… 余下全文

篇二 :实验二、基于Simulink的直流斩波电路的仿真实验报告

仲恺农业工程学院实验报告纸

  自动化   (院、系)  自动化   专业  112         电力电子技术

学号 21     姓名       易伟雄    实验日期   2013.11.26     教师评定          

实验二、基于Simuilink的直流斩波电路仿真实验

一、实验目的

(1)加深理解直流斩波电路的工作原理。

(2)学会应用Matlab的可视化仿真工具Simulink以及元器件的参数设置。

二、实验内容

2.1理论分析

2.1.1直流降压斩波电路

直流降压斩波电路原理图如图1(a)所示。图中用理想开关S代表实际的电力电子开关器件;R为纯阻性负载。当开关S在ton时间接通时,加到负载电阻上的电压Uo等于直流电源Ud。当开关S在toff时间断开时,输出电压为零,直流变换波形如图1(b)所示。输出电压平均值为:     Uo=ton/Ts*Ud= D*Ud(1)

…… …… 余下全文

篇三 :实验八 直流斩波电路的性能研究

 

 

实验八  直流斩波电路的性能研究

一.实验目的

熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。

二.实验内容

1.SG3525芯片的调试。

2.降压斩波电路的波形观察及电压测试。

3.升压斩波电路的波形观察及电压测试。

三.实验设备及仪器

1.电力电子教学实验台主控制屏。

2.MCL-16组件。

3.MEL-03电阻箱 (900Ω/0.41A) 或其它可调电阻盘。

4.万用表。

5.双踪示波器

6.2A直流安培表(MCL-Ⅱ2A直流毫安表为数字式仪表,MCL-Ⅲ 2A直流安培表为指针式仪表,其他型号可能为MEL-06)。

四.实验方法

1.SG3525的调试。

原理框图见图3—11。

将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。

扭子开关S2扳向“OFF”,用导线分别连接“5”、“6”、“9”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。

…… …… 余下全文

篇四 :实验六直流斩波电路的性能研究(六种典型线路)V2[1].1版1

实验六直流斩波电路的性能研究(六种典型线路)

一、实验目的

(1)熟悉直流斩波电路的工作原理。

(2)熟悉各种直流斩波电路的组成及其工作特点。

(3)了解PWM控制与驱动电路的原理及其常用的集成芯片。

二、实验所需挂件及附件

三、实验线路及原理

 1、主电路

 ①、降压斩波电路(Buck Chopper)

降压斩波电路(Buck Chopper)的原理图及工作波形如图4-14所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图4-14b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:


式中t on为V处于通态的时间,t off为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。由此可知,输出到负载的电压平均值U O最大为U i,若减小占空比α,则U O随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

(a)电路图

…… …… 余下全文

篇五 :南昌大学电力电子技术实验标准答案4-直流斩波电路

六.实验报告

1.分析PWM波形发生的原理

PWM控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调剂,来等效地获得所需要波形(含形状和幅值)。

在采样的控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积,效果基本相同的是指环节的输出响应波形基本相同,上述原理称为面积等效原理。

以正弦PWM控制为例。把正弦半波分成N等份,就可以把其看成是N个彼此相连的脉冲列所组成的额波形。这些脉冲宽度相等,都等于π/N,但幅值不等且窄脉冲顶部都不是水平直线而是曲线,各种脉冲幅值按正弦规律变化。如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM波形。各PWM脉冲的幅值相等而宽度是按正弦规律变化的。根据面积等效原理,PWM波形和正弦半波是等效地。对于正弦波的负半周,也可以用同样的方法得到PWM波形。可见,所得到的PWM波形和期望得到的正弦波等效。

2.记录在某一占空比D下,降压斩波电路中,MOSFET的栅源电压波形,输出电压Uo波形,并绘制降压斩波电路的Ui/Uo-D曲线,与理论分析结果进行比较,并讨论产生差异的原因。

…… …… 余下全文

篇六 :PWM直流斩波电路分析及测试

实验四  PWM直流斩波电路分析及测试

一.实验目的

1.掌握Buck—Boost变换器的工作原理、特点与电路组成。

2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。

3.掌握Buck—Boost变换器的调试方法。

二.实验内容

1.连接实验线路,构成一个实用的Buck—Boost变换器。

2.调节占空比,测出电感电流iL处于连续与不连续临界状态时的占空比D,并与理论值相比较。

3.将电感L增大一倍,测出iL处于连续与不连续临界状态时的占空比D,并与理论值相比较。

4.测出连续与不连续工作状态时的Vbe、Vce、VD、VL、iL、iC、iD等波形。

5.测出直流电压增益M=VO/VS与占空比D的函数关系。

6.测试输入、输出滤波环节分别对输入电流iS与输出电流iO影响。

三.实验线路

见图4—5。

四.实验设备和仪器

1.MCL-08直流斩波及开关电源实验挂箱

2.万用表

3.  双踪示波器

五.实验方法

1.检查PWM信号发生器与驱动电路工作是否正常

连接有关线路,观察信号发生器输出与驱动电路的输出波形是否正常,如有异常现象,则先设法排除故障。

…… …… 余下全文

篇七 :直流斩波电路的设计与仿真

电力电子技术课程设计报告

姓    名:

学    号:

班    级:

指导老师:

专    业:

设计时间:

目录

 绪论………………………………………………………………….3

一. 降压斩波电路…………………………………………………..6

二. 直流斩波电路工作原理及输出输入关系……………12

三. D c/D C变换器的设计…………………………………………18

四. 测试结果…………………………………………………………19

五. 直流斩波电路的建模与仿真......................................29

六. 课设体会与总结....................................................30

七. 参考文献…………………………………………………………31

绪    论
1. 电力电子技术的内容
电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。
实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。

变换器共有四种类型:

交流-直流(AC-DC)变换:将交流电转换为直流电。
直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。
交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。
直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。
2. 电力电子技术的发展
在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。

1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。
70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。

控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。
微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可利用软件编程,既方便又灵活。

各种新颖、复杂的控制策略和方案得到实现,并具有自诊断功能,并具有智能化的功能。将新的控制理论和方法应用在变换器中。
综上所述可以看出,微电子技术、电力电子器件和控制理论则是现代电力电子技术的发展动力。
3.电力电子技术的重要作用
(1) 优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已许多装置列入节能的推广应用项目。

(2) 改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

(3) 电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

(4) 电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。
4. 电力电子技术课程的学习要求
(1) 熟悉和掌握常用电力电子器件的工作机理、特性和参数,能正确选择和使用它们。
(2) 熟悉和掌握各种基本变换器的工作原理,特别是各种基本电路中的电磁过程,掌握其分析方法、工作波形分析和变换器电路的初步设计计算。
(3) 了解各种开关元件的控制电路、缓冲电路和保护电路。
(4) 了解各种变换器的特点、性能指标和使用场合。
(5) 掌握基本实验方法与训练基本实验技能。 

…… …… 余下全文

篇八 :直流斩波电路设计与仿真

电力电子技术课程设计报告

姓    名:

学    号:

班    级:

指导老师:

专    业:

设计时间:

目录

 绪论………………………………………………………………….3

一. 降压斩波电路…………………………………………………..6

二. 直流斩波电路工作原理及输出输入关系……………12

三. D c/D C变换器的设计…………………………………………18

四. 测试结果…………………………………………………………19

五. 直流斩波电路的建模与仿真......................................29

六. 课设体会与总结....................................................30

七. 参考文献…………………………………………………………31

绪    论
1. 电力电子技术的内容
电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。
实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。

变换器共有四种类型:

交流-直流(AC-DC)变换:将交流电转换为直流电。
直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。
交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。
直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。
2. 电力电子技术的发展
在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。

1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。
70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。

控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。
微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可利用软件编程,既方便又灵活。

各种新颖、复杂的控制策略和方案得到实现,并具有自诊断功能,并具有智能化的功能。将新的控制理论和方法应用在变换器中。
综上所述可以看出,微电子技术、电力电子器件和控制理论则是现代电力电子技术的发展动力。
3.电力电子技术的重要作用
(1) 优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已许多装置列入节能的推广应用项目。

(2) 改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

(3) 电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

(4) 电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。
4. 电力电子技术课程的学习要求
(1) 熟悉和掌握常用电力电子器件的工作机理、特性和参数,能正确选择和使用它们。
(2) 熟悉和掌握各种基本变换器的工作原理,特别是各种基本电路中的电磁过程,掌握其分析方法、工作波形分析和变换器电路的初步设计计算。
(3) 了解各种开关元件的控制电路、缓冲电路和保护电路。
(4) 了解各种变换器的特点、性能指标和使用场合。
(5) 掌握基本实验方法与训练基本实验技能。 

…… …… 余下全文