篇一 :高中数学导数知识点归纳总结

核心出品

必属精品

免费下载

考试内容:
导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.

考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.

§14.   知识要点

 

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②以知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.

…… …… 余下全文

篇二 :导数高考知识点总结(最全)

导数知识点归纳及应用

知识点归纳

一、相关概念

1.导数的概念

函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|。即f(x)==

说明:

(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。

(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f(x)在点x处的导数的步骤:

① 求函数的增量=f(x+)-f(x);

② 求平均变化率=

③ 取极限,得导数f’(x)=

例:设f(x)= x|x|, 则f′(  0)=         .

[解析]:∵高考资源网(www.ks5u.com),中国最大的高考网站,您身边的高考专家。 

∴f′(  0)=0

2.导数的几何意义

函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。

…… …… 余下全文

篇三 :导数知识点总结

  知识要点

 

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②已知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.

事实上,令,则相当于.

于是

⑵如果处连续,那么在点处可导,是不成立的.

例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.

注:①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义:

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

4、几种常见的函数导数:

为常数)              )          

…… …… 余下全文

篇四 :高中导数及其应用知识点归纳(总结得很好,实用)

第三章  导数及其应用

3.1.2导数的概念(要求熟悉)

1.函数处的导数:函数处的瞬时变化率称为处的导数,记作,即

3.1.3导数的几何意义(要求掌握)

 1.导数的几何意义:函数处的导数就是曲线在点处切线的斜率,

2.求切线方程的步骤:(注:已知点在已知曲线上)

  ①求导函数;②求切线的斜率;③代入直线的点斜式方程:,并整理。

3.求切点坐标的步骤:①设切点坐标;②求导函数;③求切线的斜率;④由斜率间的关系列出关于的方程,解方程求;⑤点在曲线上,将代入求,得切点坐标。

3.2导数的计算(要求掌握)

1. 基本初等函数的导数公式:①;②;③;④

;⑥;⑦;⑧.

2.导数运算法则:① ;②

;④

3.3.1函数的单调性与导数

(1)在区间内,>0,f(x)为单调递增;<0,f(x)为单调递减。

(2)用导数求函数单调区间的三个步骤:①确定函数的定义域;②求函数f(x)的导数;③令解不等式,得x的范围就是递增区间;④令解不等式,得x的范围就是递减区间。

(3)用导数判断或证明函数的单调性的步骤:①求函数f(x)的导数;②判断的符号;③给出单调性结论。

…… …… 余下全文

篇五 :高中数学导数知识点归纳总结

§14.   知识要点

 

1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量处有增量,则函数值也引起相应的增量;比值称为函数在点之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做处的导数,记作,即=.

注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.

②以知函数定义域为的定义域为,则关系为.

2. 函数在点处连续与点处可导的关系:

⑴函数在点处连续是在点处可导的必要不充分条件.

可以证明,如果在点处可导,那么处连续.

事实上,令,则相当于.

于是

⑵如果处连续,那么在点处可导,是不成立的.

例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.

注:①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.

3. 导数的几何意义:

函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为

4. 求导数的四则运算法则:

为常数)

注:①必须是可导函数.

②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

…… …… 余下全文

篇六 :导数复习知识点总结

高考数学复习详细资料——导数概念与运算知识清单

1.导数的概念

函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|

即f(x)==

说明:

(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。

(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):

(1)求函数的增量=f(x+)-f(x);

(2)求平均变化率=

(3)取极限,得导数f’(x)=

2.导数的几何意义

函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。

3.几种常见函数的导数:

…… …… 余下全文

篇七 :高中文科导数知识点汇总

导数公式及知识点

1、函数的单调性

(1)设那么

上是增函数;

上是减函数.

(2)设函数在某个区间内可导,若,则为增函数;若,则为减函数.

2、函数的奇偶性

对于定义域内任意的,都有,则是偶函数;

对于定义域内任意的,都有,则是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、函数在点处的导数的几何意义

函数在点处的导数是曲线处的切线的斜率,相应的切线方程是.

4、几种常见函数的导数

;②;    ③;④

;⑥;    ⑦;⑧

5、导数的运算法则

(1).  (2).  (3).

6、会用导数求单调区间、极值、最值 

7、求函数的极值的方法是:解方程.当时:

(1) 如果在附近的左侧,右侧,那么是极大值;

(2) 如果在附近的左侧,右侧,那么是极小值.

 1.导数与单调性: 导数及其应用

(1)一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数;

…… …… 余下全文

篇八 :高中数学知识点总结_导数的应用

导数的应用、复数

1.用导数研究函数的单调性。在区间内可导,若>0,则上递增;若<0,则上递减. 注意:为正(负)是函数递增(减)充分不必要条件。如果函数f(x)在区间(a,b)内可导且不是常函数,上述结论可以改进为:f(x)在区间(a,b)上单调递增≥0在(a,b)上恒成立;f(x)在区间(a,b)上单调递减≤0在(a,b)上恒成立

[举例1]已知函数是增函数,求实数的范围。

解析:≥0在上恒成立上恒成立

上的最小值为16,故

[举例2]已知定义在R上的函数y=f(x)的导函数f/(x)在R上也可导,且其导函数[f/(x)]/<0,

则y=f(x)的图象可能是下图中的                                    (  C   )

…… …… 余下全文