理论力学总结

这个学期学的理论力学主要分为静力学、运动学与动力学三个方面。故名思议静力学主要研究平衡物体;运动学主要从集合的角度研究物体的运动速度加速度等;而动力学主要研究物体的运动与作用力之间的关系。

而所有的内容都可以归为一个公式

任何事物的研究都应该是由简到繁,再由繁中去寻找简与繁之间的桥梁。理论力学的研究也是如此。就好像要练就一本武林秘籍一样,首先要打好基础,才能一步步的开始研究学习。

简,即为静止事物的研究,也就是说牛顿第二定律中=0。此时研究起来就会免去很多由于运动而带来的不便。也就是课本前三章讲的内容。

繁,即为运动物体的研究,即。而如果要研究运动物体的受力情况,就必须要先弄明白物体的运动情况,即其速度与加速度的分析,也就是4-6章的内容。

要分析运动物体的受力情况,就要寻找简与繁之间的桥梁,这也就出现了第7章的虚位移原理,与第八章的达朗贝尔原理。在我个人的理解,虚位移原理,即为将运动加入到了静止的结构中,通过计算虚功,另起为0,得到结构中的约束力等,这里主要会用到第4-6章中的速度分析来将其解出。也就是说解决这里问题的前提是学号了速度的分析。而说道达朗贝尔原理,即将静力学的内容加入到运动物体的分析之中,从来认为的引入了惯性力和惯性力偶的概念,而分析惯性力和惯性力偶的前提是第4-6章中的加速度分析。这也是我学期结束后,我认为运动学这部分重要的原因。

而后面的动力学三大定理以及拉格朗日方程则是在解决某些动力学问题的简单方法。在动力学普遍定理这一章有刚体平面运动微分方程,仔细看的话不难发现,其实就是达朗贝尔的变形,抑或说达朗贝尔原理是刚体平面运动微分方程的变形。

拉格朗日方程对于广义坐标为两个以上的问题,解决起来比较方便。对于系统中只有有势力的有两个以上广义坐标的系统解决起来其方便性可以更好的看出。

以下是我的总结的具体内容:

首先是各大部分的联系的大致框架

(由于本页不能放开,故请于下页寻找)

                                                           

 

运动学中速度分析                          加入惯性力后,

结构为平衡力系

 


运动学中的

加速度分析

 

一、静力学主要知识

1.力系的简化   空间任意力系简化的最终结果

在了解了各种约束的特点后,便应该是计算约束力等问题,此时要用到

2.力系平衡方程

①平面力系需列三个方程

 

②空间力系平衡方程有六个

    

        

3.考虑摩擦的平衡问题

分析考虑摩擦的平衡问题问题时,分析的基本步骤与没有摩擦的问题的分析办法相似,只是需要加入补充方程

①静摩擦时

②动摩擦时

4.滚动摩阻

滚动摩阻力偶矩M的大小介于0与最大值之间,即

其中为滚动摩阻系数,具有长度的量纲,一般用mm。由于滚动摩阻系数较小,因此在大多数情况下滚动摩阻是可以忽略不记的。

二、运动学知识

运动学主要分为点的运动及其合成运动和刚体的简单运动和平面运动,而此部分又可分为速度分析和加速度分析。因为我认为速度分析和加速度分析分别对后面的虚位移原理和达朗贝尔原理有直接联系,故此处我将从速度和加速度两大部分进行分析。

速度分析

点的速度

对于点的速度分析,主要需要合适的寻找动点、动参考系和定参考系。这样就会多出绝对运动速度、相对运动速度和牵连运动速度。其中相对速度为动点相对于动系的运动速度,牵连速度为任一瞬时动系上与动点M重合的点的速度。其三者的关系为:

做定轴转动的情况下

     在求出速度后很多情况下回需要去求角速度,此时用对应速度除以其对应的转动半径即可。

     刚体上个点的速度分析

     刚体上各点的速度分析主要有:

1.      基点法

2.      速度投影定理

3.      瞬心法

基点法

选择刚体上一点A的速度已知,现在分析任意点M的速度,则有

其中为动点相对于基点A的速度。

速度投影定理

同一刚体上任意两点的速度在该两点连线上的投影相等(大小和方向)。

用公式表达即为:

瞬心法

刚体做平面运动时,任意瞬时平面图形上存在且仅存在一个点,在此瞬时该点的绝对速度为0,称该点为此瞬时刚体的速度瞬心。此瞬时刚体上其他点的速度分布规律等效于此瞬时的图形以刚体的角速度绕瞬心做顶轴转动时的速度。一般纯滚动的情形时。与固定面之接触点即为该时刻的速度瞬心。普通的速度瞬心为与不平行的两点速度相垂直的两线的交点。

加速度分析

点的分析

1.      当动系平动时

2.动系转动时

其中为科氏加速度,且。其中中的一个是反映由于牵连运动(转动)引起方向的变化,另一个反映了相对运动引起的的大小的变化。

刚体上各点的加速度分析

在刚体上选择基点A,取B为动点,设A点的加速度为

平面运动的角速度为,角加速度为,则相对加速度为

则有加速度合成定理得

其中有 

方向由B指向A。

方向垂直AB

刚体绕平行轴转动时有 

一般在分析问题的时候会联立 

                               

对问题进行求解。

达朗贝尔原理

达朗贝尔原理其实就是引入一个惯性力的概念,把动力学问题变成了静力学问题。因为我觉得达朗贝尔原理与刚体平面运动微分方程类似,故在此将两者结合在一起来谈。

达朗贝尔运力的叙述与证明

非自由质点,主动力为F,约束力FN,由牛顿第二定律得

移项后有

引入广兴力的概念

就会有

对于质点系则有

(i=1,2,3...,n)

在求解静力学问题的时候,因为内力是成对出现可以消掉,因而不出现在平衡方程中,因而有

之所以说此处与前面的加速度分析有直接关系是因为此处的惯性力与加速度直接相关,如果加速度分析不对,惯性力必然会算错,用达朗贝尔原理后必然结果会算错。

而达朗贝尔原理在此处分析刚体的问题还是比较多的,因此在刚体分析的时候会出现力系向质心简化的问题。对于刚体平面运动还会有惯性力偶。在分析的时候会有

而对于刚体平面运动微分方程的形式

在我看来两者的区别完全就是移项与不移项的问题。

动力学三大定理

质点系的动量定理

质点系的动量矩定理

质点系的动能定理

其中T2和T1分别表示质系在任意路程的运动中的终点和起点的动能。表示作用在力系上的全部力在这段路程中所做的功的和。

动力学普遍方程

仔细观察此式,并对比达朗贝尔原理及虚位移原理,你会发下这公式其实就是达朗贝尔原理再用上虚位移原理的结果。

 

第二篇:理论力学总结

理论力学总结

姓名:黄亚敏    班级0911物理学  学号:2009110102  指导老师:夏清华

前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。

  

初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么

,即曲线上的某点p的沿位矢方向的坐标对时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算因为我开始的错误理解是: 与时间没有关系,因为在直角坐标系中,并没有对求导,但是不同的是,在直角坐标系中,单位矢量是不变的,但在极坐标中,单位矢量的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这里的单位矢量是一个变量。求得的速度加速度表达式为,还可以用自然坐标算出加速度,表达式简单一些,但前提是要清楚曲线的曲率半径,才会简化加速度表达式,为,通过不同的题目选择不同的坐标可以使计算更简单。

      对我来说,力学的一些定律一直都很熟悉,从最开始学物理的时候就能把一些力学定律背得很清楚,牛顿第二定律,动量定理和动量守恒定律,动量矩(角动量矩)定理和动量矩(角动量)守恒定律,动能定理和机械能守恒定律,但是使用起来的就需要更灵活的掌握了,首先要清楚使用每个定律的条件,通常可一分为两条主线来研究

,通过这几个变化和题目中的条件判断出动量和角动量是否为常量,在选择使用哪一个定律。

变换有 质点——质点组

       平面坐标系——非惯性参考系(平动参考系)——转动参考系

老师讲课的时候,都是花了大力气讲的,第一个是,这是重点,是学习理论力学的基础,必须要讲清楚,大概花了十几个课时来讲这方面的内容。同时第二,这也是个难点,要很熟练的掌握,需要真正的理解,否则只能是一头雾水,我很清楚我在这一块,尤其是平动参考系和转动参考系有许多还不太清楚,

 所以写这方面的总结还要在下去看懂了才能写出来,

这本书的重点和难点就是刚体力学,从它给出的的习题可以看出,夏老师在将这一章的时候没有按照书上的编排顺序讲,首先讲的是刚体的瞬心和质心的判断,然后再讲刚提的平面平行运动、刚提平动和绕固定轴的转动、转动惯量、欧拉角、刚体绕固定点的 转动。

平动——刚体各点的速度及加速度相同,但不一定是直线运动,。  有三个独立变量(与质点相同)

定轴转动——转动轴上诸点不动,其它点都绕轴线上某点作圆周运动,定轴转动只有一个独立变量。

平行于一平面的运动——各点均始终在平行与某固定平面的平面运动,可分解为平动及定轴转动的组合,固有三个独立变量

定点转动——在运动中,刚体内只有一点始终保持不动,有三个独立变量

一般运动——可视为平动与定点转动的合成,有六个独立变量

分析力学是我们学习《理论力学》这一书最新的地方,最有趣的地方,最难得地方,我写的理论力学论文也是关于这方面的,《经典物理与分析物理的部分比较》,虽然对这一部分并不是很懂,但是有一点点小的感悟。

在引入虚功原理时,作者是用牛顿力学中力学体系平衡条件推出的,后文再无讨论。,分析力学的基础,同时也是分析力学中仅有的物理意义较明显的部分-虚功原理,是建立在牛顿力学基础上的!读者仍需把虚功原理作为最基本的假设,而后文的所有过程都将建立在这一假设基础上。推理过程只能说明牛顿力学与分析力学的相洽,并非像书中所暗示的那样,分析力学需要牛顿力学为基础,使牛顿力学加数学的产物。仔细考虑会发现,这两者之间的根本区别便存在于虚功原理之中。现在来分析一下。

牛顿力学认为,只要力学体系所受力是确定的,那么其下一刻的运动方向便是确定的,这是一种微观上的确定论。反观分析力学,不管是“虚功”定义还是对“虚功原理”的阐述以至达朗贝尔-拉格朗日方程的写出,都一再强调其中虚位移的方向是在“所有可能方向上”的。在分析力学看来,力学体系即使所受力是确定的,其运动方向仍然(在很程度上)是任意的,真实运动的特殊性在于它满足达朗贝尔-拉格朗日方程。这原本是一个可以让人感觉很奇妙的事情,但在作者的写法下完全失去了其应有的魅力。作者的意图是让分析力学建立于读者所熟悉的物理基础上,然而事实上,这种把分析力学作为牛顿力学推论的做法只会使分析力学由原本物理意义较弱完全沦为一种数学游戏。事实上,以虚功原理为最基本假设,分析力学看起来会更有意思。

若不能领悟虚功原理,那么对于后面虚功原理的积分形式-哈密顿原理便可能不会理解的特别好。哈密顿原理认为,两个时间点内力学体系的可能运动方式是任意的,真实运动的特殊性在于其作用函数的积分具有稳定值。这种说法看起来更好想象,因为它有了时间的间隔,不必去想微观上的虚位移。而且这个结论也足够吸引人,真实运动的作用函数积分后变分为零,是不是看起来很舒服,是不是会引人遐想-世界怎么会以这种舒服的方式运转呢?

仔细想想,就会发现哈密顿原理与(微分)虚功原理的共通之处-不事先考虑体系的运动方式,而是统统写出来之后,再通过某种数学标准将之挑出。因为涉及所有可能方向,我把它叫做宏观确定性(在哈密顿原理中这种说法已接近字面义了),这是分析力学的特点所在,也是区别于牛顿力学的根本所在。

相关推荐