高一数学知识点总结--必修5

高中数学必修5知识点

第一章:解三角形

1、正弦定理:在中,分别为角的对边,的外接圆的半径,则有

2、正弦定理的变形公式:①

;(正弦定理的变形经常用在有三角函数的等式中)

3、三角形面积公式:

4、余 定理:在中,有

5、余弦定理的推论:

6、设的角的对边,则:①若,则为直角三角形;

②若,则为锐角三角形;③若,则为钝角三角形.

第二章:数列

1、数列:按照一定顺序排列着的一列数.

2、数列的项:数列中的每一个数.

3、有穷数列:项数有限的数列.

4、无穷数列:项数无限的数列.

5、递增数列:从第2项起,每一项都不小于它的前一项的数列.

6、递减数列:从第2项起,每一项都不大于它的前一项的数列.

7、常数列:各项相等的数列.

8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.

9、数列的通项公式:表示数列的第项与序号之间的关系的公式.

10、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.

11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.

12、由三个数组成的等差数列可以看成最简单的等差数列,则称为的等差中项.若,则称的等差中项.

13、若等差数列的首项是,公差是,则.              

 通项公式的变形:①;②;③;④;⑤

14、若是等差数列,且),则;若是等差数列,且),则;下角标成等差数列的项仍是等差数列;连续m项和构成的数列成等差数列。

15、等差数列的前项和的公式:①;②

16、等差数列的前项和的性质:①若项数为,则,且.②若项数为,则,且(其中).

17、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.

18、在中间插入一个数,使成等比数列,则称为的等比中项.若,则称的等比中项.

19、若等比数列的首项是,公比是,则

20、通项公式的变形:①;②;③;④

21、若是等比数列,且),则;若是等比数列,且),则;下角标成等差数列的项仍是等比数列;连续m项和构成的数列成等比数列。

22、等比数列的前项和的公式:

      时,,即常数项与项系数互为相反数。

23、等比数列的前项和的性质:①若项数为,则

.   ③成等比数列.

24、的关系:

一些方法:

一、求通项公式的方法

1、由数列的前几项求通项公式:待定系数法

①若相邻两项相减后为同一个常数设为,列两个方程求解;

②若相邻两项相减两次后为同一个常数设为,列三个方程求解;

③若相邻两项相减后相除后为同一个常数设为,q为相除后的常数,列两个方程求解;

2、由递推公式求通项公式:

①若化简后为形式,可用等差数列的通项公式代入求解;

②若化简后为形式,可用叠加法求解;

③若化简后为形式,可用等比数列的通项公式代入求解;

④若化简后为形式,则可化为,从而新数列是等比数列,用等比数列求解的通项公式,再反过来求原来那个。(其中是用待定系数法来求得)

3、由求和公式求通项公式:

    ②   ③检验,若满足则为,不满足用分段函数写。

4、其他

  (1)形式,便于求和,方法:迭加;

例如:

有:

(2)形式,同除以,构造倒数为等差数列;

例如:,则,即为以-2为公差的等差数列。

(3)形式,,方法:构造:为等比数列;

例如:,通过待定系数法求得:,即等比,公比为2。

(4)形式:构造:为等比数列;

(5)形式,同除,转化为上面的几种情况进行构造;

因为,则,若转化为(1)的方法,若不为1,转化为(3)的方法

二、等差数列的求和最值问题:(二次函数的配方法;通项公式求临界项法)

①若,则有最大值,当n=k时取到的最大值k满足

②若,则有最小值,当n=k时取到的最大值k满足

三、数列求和的方法

①叠加法:倒序相加,具备等差数列的相关特点的,倒序之后和为定值;

②错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式,如:

③分式时拆项累加相约法:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式。如:等;

④一项内含有多部分的拆开分别求和法:适用于通项中能分成两个或几个可以方便求和的部分,如:等;

四、综合性问题中

①等差数列中一些在加法和乘法中设一些数为类型,这样可以相加约掉,相乘为平方差;

②等比数列中一些在加法和乘法中设一些数为类型,这样可以相乘约掉。

第三章:不等式

1、

比较两个数的大小可以用相减法;相除法;平方法;开方法;倒数法等等。

2、不等式的性质: ①;②;③

;⑤

;⑦

3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是的不等式.

4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:

5、二元一次不等式:含有两个未知数,并且未知数的次数是的不等式.

6、二元一次不等式组:由几个二元一次不等式组成的不等式组.

7、二元一次不等式(组)的解集:满足二元一次不等式组的的取值构成有序数对,所有这样的有序数对构成的集合.

8、在平面直角坐标系中,已知直线,坐标平面内的点

①若,则点在直线的上方.

②若,则点在直线的下方.

9、在平面直角坐标系中,已知直线

①若,则表示直线上方的区域;表示直线下方的区域.

②若,则表示直线下方的区域;表示直线上方的区域.

10、线性约束条件:由的不等式(或方程)组成的不等式组,是的线性约束条件.

目标函数:欲达到最大值或最小值所涉及的变量的解析式.

线性目标函数:目标函数为的一次解析式.

线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.

可行解:满足线性约束条件的解

可行域:所有可行解组成的集合.

最优解:使目标函数取得最大值或最小值的可行解.

11、设是两个正数,则称为正数的算术平均数,称为正数的几何平均数.

12、均值不等式定理: 若,则,即

13、常用的基本不等式:

;④

14、极值定理:设都为正数,则有

⑴若(和为定值),则当时,积取得最大值

⑵若(积为定值),则当时,和取得最小值

 

第二篇:高一数学知识点总结--必修5 - 副本

高中数学必修5知识点

第二章:数列

1、数列:按照一定顺序排列着的一列数.

2、数列的项:数列中的每一个数.

3、有穷数列:项数有限的数列.

4、无穷数列:项数无限的数列.

5、递增数列:从第2项起,每一项都不小于它的前一项的数列.

6、递减数列:从第2项起,每一项都不大于它的前一项的数列.

7、常数列:各项相等的数列.

8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.

9、数列的通项公式:表示数列的第项与序号之间的关系的公式.

10、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.

11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.

12、由三个数组成的等差数列可以看成最简单的等差数列,则称为的等差中项.若,则称的等差中项.

13、若等差数列的首项是,公差是,则.              

 通项公式的变形:①;②;③;④;⑤

14、若是等差数列,且),则;若是等差数列,且),则;下角标成等差数列的项仍是等差数列;连续m项和构成的数列成等差数列。

15、等差数列的前项和的公式:①;②

16、等差数列的前项和的性质:①若项数为,则,且.②若项数为,则,且(其中).

17、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.

18、在中间插入一个数,使成等比数列,则称为的等比中项.若,则称的等比中项.

19、若等比数列的首项是,公比是,则

20、通项公式的变形:①;②;③;④

21、若是等比数列,且),则;若是等比数列,且),则;下角标成等差数列的项仍是等比数列;连续m项和构成的数列成等比数列。

22、等比数列的前项和的公式:

      时,,即常数项与项系数互为相反数。

23、等比数列的前项和的性质:①若项数为,则

.   ③成等比数列.

24、的关系:

一些方法:

数列求通项的方法

1、由递推公式求通项公式:

①若化简后为形式,可用等差数列的通项公式代入求解;

②若化简后为形式,可用叠加法求解;

③若化简后为形式,可用等比数列的通项公式代入求解;

④若化简后为形式,则可化为,从而新数列是等比数列,用等比数列求解的通项公式,再反过来求原来那个。(其中是用待定系数法来求得)

2、由求和公式求通项公式:

    ②   ③检验,若满足则为,不满足用分段函数写。

3、形式,便于求和,方法:迭加;

例如:

有:

数列求和的方法

①倒序相加,具备等差数列的相关特点的,倒序之后和为定值;

②错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式,如:

③裂项相消:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式。如:等;

④分组求和法:适用于通项中能分成两个或几个可以方便求和的部分,如:等;

第三章:不等式

1、

比较两个数的大小可以用相减法;相除法;平方法;开方法;倒数法等等。

2、不等式的性质: ①;②;③

;⑤

;⑦

3、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:

4、线性约束条件:由的不等式(或方程)组成的不等式组,是的线性约束条件.

目标函数:欲达到最大值或最小值所涉及的变量的解析式.

线性目标函数:目标函数为的一次解析式.

线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.

可行解:满足线性约束条件的解

可行域:所有可行解组成的集合.

最优解:使目标函数取得最大值或最小值的可行解.

5、设是两个正数,则称为正数的算术平均数,称为正数的几何平均数.

6、均值不等式定理: 若,则,即

7、常用的基本不等式:

;④

8、极值定理:设都为正数,则有

⑴若(和为定值),则当时,积取得最大值

⑵若(积为定值),则当时,和取得最小值

 

第三篇:高一数学必修一知识点总结

高一数学必修1各章知识点总结

第一章 集合与函数概念

一、集合有关概念

1.   集合的含义

2.   集合的中元素的三个特性:

(1) 元素的确定性如:世界上最高的山

(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

u  注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集  N*或 N+   整数集Z  有理数集Q  实数集R

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集   含有有限个元素的集合

(2) 无限集   含有无限个元素的集合

(3) 空集     不含任何元素的集合  例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B  (5≥5,且5≤5,则5=5)

实例:设  A={x|x2-1=0}  B={-1,1}   “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作AB(或BA)

③如果 AÍB, BÍC ,那么 AÍC

④ 如果AÍB  同时 BÍA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

u  有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

例题:

1.下列四组对象,能构成集合的是                                   (   )

A某班所有高个子的学生  B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数

2.集合{a,b,c }的真子集共有      个 

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是          .

4.设集合A=,B=,若AB,则的取值范围是       

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有      人。

6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=               .

7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

   (3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1. 

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,  

(7)实际问题中的函数的定义域还要保证实际问题有意义.

u  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(xy)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(xy)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(xy),均在C上 .

(2) 画法

A、 描点法:

B、 图象变换法

常用变换方法有三种

1)   平移变换

2)   伸缩变换

3)   对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射fAB来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数  

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A)  称为f、g的复合函数。

  

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x12时,都有f(x1)2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.

如果对于区间D上的任意两个自变量的值x1,x2,当x12 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x12;

2 作差f(x1)-f(x2);

3 变形(通常是因式分解和配方);

4 定号(即判断差f(x1)-f(x2)的正负);

5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x)y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对称;

2确定f(-x)与f(x)的关系;

3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)   凑配法

2)   待定系数法

3)   换元法

4)   消参法

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值

2 利用图象求函数的最大(小)值

3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

例题:

1.求下列函数的定义域:

        ⑵   

2.设函数的定义域为,则函数的定义域为_  _  

3.若函数的定义域为,则函数的定义域是        

4.函数 ,若,则=           

5.求下列函数的值域:

           ⑵ 

(3)               (4)

6.已知函数,求函数的解析式

7.已知函数满足,则=             。

8.设是R上的奇函数,且当时,,则当=   

  在R上的解析式为                       

9.求下列函数的单调区间:

 ⑴   ⑵  ⑶

10.判断函数的单调性并证明你的结论.

11.设函数判断它的奇偶性并且求证:

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做次方根,其中>1,且*.

u  负数没有偶次方根;0的任何次方根都是0,记作

是奇数时,,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

u  0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1)·                                         

(2)                                            

(3)                                          

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是
(2)若,则取遍所有正数当且仅当
(3)对于指数函数,总有

二、对数函数

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:— 底数,— 真数,— 对数式)

说明:1 注意底数的限制,且

2

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数

2 自然对数:以无理数为底的对数的对数

u  指数式与对数式的互化

高一数学必修一函数知识点总结

(二)对数的运算性质

如果,且,那么:

1 ·

2

3   

注意:换底公式

  (,且,且).

利用换底公式推导下面的结论

(1);(2)

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制:,且

2、对数函数的性质:

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

例题:

1. 已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是       (  )

       

2.计算: ①         ;②=        ;=         ;

  =        

3.函数y=log(2x2-3x+1)的递减区间为           

4.若函数在区间上的最大值是最小值的3倍,则a=       

5.已知,(1)求的定义域(2)求使的取值范围

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

1 (代数法)求方程的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

5.函数的模型

文本框: 不符合实际 

相关推荐