初中函数知识点总结非常全

知识点一、平面直角坐标系                                                      

1、平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

 1、各象限内点的坐标的特征

    点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

2、坐标轴上的点的特征

点P(x,y)在x轴上,x为任意实数

点P(x,y)在y轴上,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上x与y相等

点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

知识点三、函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点四、正比例函数和一次函数  

1、正比例函数和一次函数的概念

一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。

特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。

2、一次函数的图像  所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

4、正比例函数的性质

一般地,正比例函数有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大,图像从左之右上升;

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小,图像从左之右下降。

5、一次函数的性质

一般地,一次函数有下列性质:

(1)当k>0时,y随x的增大而增大

(2)当k<0时,y随x的增大而减小

(3)当b>0时,直线与y轴交点在y轴正半轴上

(4)当b<0时,直线与y轴交点在y轴负半轴上

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法

知识点五、反比例函数   

1、反比例函数的概念

一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成或xy=k的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、 反比例函数的性质

4、反比例函数解析式的确定

确定解析式的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义

若过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。 

知识点六、二次函数的概念和图像 

1、二次函数的概念

一般地,如果特别注意a不为零,那么y叫做x 的二次函数。

叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征(也叫抛物线的三要素):

①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法

五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。  

知识点七、二次函数的基本形式

1. 二次函数基本形式:的性质:

 a 的绝对值越大,抛物线的开口越小。

2. 的性质:

二次函数的图像可由的图像上下平移得到(平移规律:上加 下减)

3. 的性质:

二次函数的图像可由的图像左右平移得到(平移规律:左加  右减)

4. 的性质:

知识点八、二次函数解析式的表示方法   

1. 一般式:为常数,);

2. 顶点式:为常数,);

3. 两点式:是抛物线与轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成两点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用两点式表示.二次函数解析式的这三种形式可以互化.

a 的绝对值越大,抛物线的开口越小。

知识点九、二次函数解析式的确定

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与轴的两个交点的横坐标,一般选用两点式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.                          

知识点十、二次函数的最值   

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,

如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y随x的增大而减小,则当时,,当时,

知识点十一、二次函数的性质  

1、二次函数的性质

2、二次函数与一元二次方程的关系(二次函数与轴交点情况):

一元二次方程是二次函数当函数值时的特殊情况.

图象与轴的交点个数:

① 当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离

推导过程:若抛物线轴两交点为,由于是方程的两个根,故

② 当时,图象与轴只有一个交点;

③ 当时,图象与轴没有交点.

 当时,图象落在轴的上方,无论为任何实数,都有

 时,图象落在轴的下方,无论为任何实数,都有

记忆规律:一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。

>0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;

<0时,图像与x轴没有交点。

知识点十二 中考二次函数压轴题常考公式(必记必会,理解记忆)

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

                                                                  y

如图:点A坐标为(x1,y1)点B坐标为(x2,y2

则AB间的距离,即线段AB的长度为            A

                                                                  0           

                                                              B

2、二次函数图象的平移

① 将抛物线解析式转化成顶点式,确定其顶点坐标

② 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

③平移规律  在原有函数的基础上“值正右移,负左移;值正上移,负下移”.括成八个字“左加右减,上加下减”.函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)

3直线斜率:   

4、设两条直线分别为,    若,则有。   若

知识点十三、二次函数的图象与各项系数之间的关系

抛物线中, a b c,的作用

(1)决定开口方向及开口大小,这与中的完全一样.

 >0时,抛物线开口向上;<0时,抛物线开口向下;的绝对值越大,开口越小

 (2)共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线

,故:①时,对称轴为轴;②(即同号)时,对称轴在轴左侧;③(即异号)时,对称轴在轴右侧.   口诀 --- 左同   右异

 (3)的大小决定抛物线轴交点的位置.

      当时,,∴抛物线轴有且只有一个交点(0,):

      ①,抛物线经过原点;

      ②,与轴交于正半轴;

      ③,与轴交于负半轴.

      以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .

知识点十四、中考点击

 考点分析:

命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占3-6分左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占6分左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题.会求一元二次方程的近似值.

分析近年中考,预计20##年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.

 

第二篇:初中几何知识点总结非常全

证明(一)

1、本套教材选用如下命题作为公理:

(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(2)、两条平行线被第三条直线所截,同位角相等。

(3)、两边及其夹角对应相等的两个三角形全等。

(4)、两角及其夹边对应相等的两个三角形全等。

(5)、三边对应相等的两个三角形全等。

(6)、全等三角形的对应边相等、对应角相等。

此外,等式的有关性质和不等式的有关性质都可以看做公理。

2、平行线的判定定理

公理  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

                        简单说成:同位角相等,两直线平行。

    定理  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

                        简单说成:同旁内角互补,两直线平行。

定理  两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

                        简单说成:内错角相等,两直线平行。

3、平行线的性质定理

公理  两条平行线被第三条直线所截,同位角相等。

                        简单说成:两直线平行,同位角相等。

   定理  两条平行线被第三条直线所截,内错角相等。

                        简单说成:两直线平行,内错角相等。

定理  两条平行线被第三条直线所截,同旁内角互补。

                        简单说成:两直线平行,同旁内角互补。

如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

4、三角形内角和定理  三角形三个内角的和等于

5、三角形内角和定理的推论

三角形的一个外角等于和它不相邻的两个内角的和。

   三角形的一个外角大于任何一个和它不相邻的内角。

证明(二)

一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。

(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。

(4)全等三角形的对应边相等、对应角相等。

推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。

二、等腰三角形  

 1、等腰三角形的性质

(1)等腰三角形的两个底角相等(简称:等边对等角)

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则<a

④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则

∠A=180°—2∠B,∠B=∠C=

2、等腰三角形的判定方法

(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

(2)有两条边相等的三角形是等腰三角形.

三、等边三角形

性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。

(2)三线合一

判定方法:(1)三条边都相等的三角形是等边三角形

(2)三个角都相等的三角形是等边三角形

(3)有一个角是60°的等腰三角形是等边三角形。

四、直角三角形

(一)、直角三角形的性质   

    1、直角三角形的两个锐角互余

2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°

4、直角三角形斜边上的中线等于斜边的一半

5、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即

其它性质:

1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。

2、常用关系式:由三角形面积公式可得:

两直角边的积=斜边与斜边上的高的积(等面积法)

(二)、直角三角形的判定   

    1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理

如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。

(三)直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

五、角的平分线及其性质与判定

1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。

定理:三角形的三条角平分线相交于一点(三角形的内心),并且这一点到三条边的距离相等。

3、角的平分线的判定定理:

在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

六、线段垂直平分线的性质与判定

1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

定理:三角形三条边的垂直平分线相交于一点(三角形的外心),并且这一点到三个顶点的距离相等。

线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

七、反证法

八、互逆命题、互逆定理

1、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

2、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。

  证明(三)

一、平行四边形   

    1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形

(2)定理1:两组对角分别相等的四边形是平行四边形

(3)定理2:两组对边分别相等的四边形是平行四边形

(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、平行四边形的面积

S平行四边形=底边长×高=ah

二、矩形   

    1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形

(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积

S矩形=长×宽=ab

三、菱形   

    1、菱形的定义

有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)菱形的四条边相等,对边平行

(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形

(2)定理1:四边都相等的四边形是菱形

(3)定理2:对角线互相垂直的平行四边形是菱形

4、菱形的面积

S菱形=底边长×高=两条对角线乘积的一半

四、正方形    (3~10分)

    1、正方形的定义

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行

(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:

先证它是矩形,再证它是菱形。

先证它是菱形,再证它是矩形。

4、正方形的面积

设正方形边长为a,对角线长为b

S正方形=

五、等腰梯形

1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定

(1)定义:两腰相等的梯形是等腰梯形

(2)定理:在同一底上的两个角相等的梯形是等腰梯形

(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

六、三角形中的中位线

1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

3、常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

七、有关四边形四边中点问题的知识点:

(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;

(2)顺次连接矩形的四边中点所得的四边形是菱形

(3)顺次连接菱形的四边中点所得的四边形是矩形

(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;

(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;

(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;

(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;

   解直角三角形知识点总结

考点一、直角三角形的性质    3~5分)

    1、直角三角形的两个锐角互余

可表示如下:∠C=90°∠A+∠B=90°

2、在直角三角形中,30°角所对的直角边等于斜边的一半。

             ∠A=30°

可表示如下:            BC=AB

             ∠C=90°

3、直角三角形斜边上的中线等于斜边的一半

             ∠ACB=90°  

可表示如下:                 CD=AB=BD=AD

             D为AB的中点

4、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即

5、摄影定理

在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项

∠ACB=90°       

  

CD⊥AB           

6、常用关系式

由三角形面积公式可得:

ABCD=ACBC

考点二、直角三角形的判定    (3~5分)

    1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理

如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念    (3~8

    1、如图,在△ABC中,∠C=90°

①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即   

②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即

③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即

2、锐角三角函数的概念

锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数

3、一些特殊角的三角函数值

4、各锐角三角函数之间的关系

(1)互余关系

sinA=cos(90°—A),cosA=sin(90°—A)

(2)平方关系

(3)倒数关系

tanAtan(90°—A)=1

(4)弦切关系

tanA=

5、锐角三角函数的增减性

当角度在0°~90°之间变化时,

(1)正弦值随着角度的增大(或减小)而增大(或减小)

(2)余弦值随着角度的增大(或减小)而减小(或增大)

(3)正切值随着角度的增大(或减小)而增大(或减小)

考点四、解直角三角形    3~5

    1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据

在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c

(1)三边之间的关系:(勾股定理)

(2)锐角之间的关系:∠A+∠B=90°

(3)边角之间的关系:

<> 知识点总结

圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。包括性质定理与判定定理及公式。

集合:

圆:圆可以看作是到定点的距离等于定长的点的集合;

圆的外部:可以看作是到定点的距离大于定长的点的集合;

圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹:

1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;

2、到线段两端点距离相等的点的轨迹是:线段的中垂线;

3、到角两边距离相等的点的轨迹是:角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线

点与圆的位置关系:

点在圆内         d<r       点C在圆内

点在圆上        d=r        点B在圆上

点在此圆外      d>r        点A在圆外

直线与圆的位置关系:

直线与圆相离    d>r    无交点        

直线与圆相切    d=r    有一个交点    

直线与圆相交    d<r    有两个交点

圆与圆的位置关系:

外离(图1)     无交点           d>R+r

外切(图2)     有一个交点       d=R+r

相交(图3)     有两个交点       R-r<d<R+r

内切(图4)     有一个交点       d=R-r

内含(图5)     无交点           d<R-r

垂径定理:

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

      (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

      (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

       以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:

      ①AB是直径    ②AB⊥CD   ③CE=DE   ④               ⑤     

推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O中,∵AB∥CD

圆心角定理

 

                          

圆周角定理

圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半

即:∵∠AOB和∠ACB是      所对的圆心角和圆周角

    ∴∠AOB=2∠ACB

圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧

即:在⊙O中,∵∠C、∠D都是所对的圆周角

             ∴∠C=∠D

推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弧是半圆,所对的弦是直径

即:在⊙O中,∵AB是直径        或∵∠C=90°

             ∴∠C=90°            ∴AB是直径

推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

即:在△ABC中,∵OC=OA=OB

               ∴△ABC是直角三角形或∠C=90°

注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

弦切角定理: 弦切角等于所夹弧所对的圆周角

推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

即:∵MN是切线,AB是弦

    ∴∠BAM=∠BCA

圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,

外角等于它的内对角。

即:在⊙O中,∵四边形ABCD是内接四边形

            ∴∠C+∠BAD=180°  B+∠D=180°

             ∠DAE=∠C

切线的性质定理与判定定理

(1)判定定理:过半径外端且垂直于半径的直线是切线

     两个条件:过半径外端且垂直半径,二者缺一不可

       即:∵MN⊥OA且MN过半径OA外端

           ∴MN是⊙O的切线

(2)性质定理:圆的切线垂直于过切点的半径(如上图)

     推论1:过圆心垂直于切线的直线必过切点

     推论2:过切点垂直于切线的直线必过圆心

以上三个定理及推论也称二推一定理:

即:过圆心、过切点、垂直切线中知道其中两个条件推出最后一个条件

              ∵MN是切线

               ∴MN⊥OA

切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA、PB是的两条切线

       ∴PA=PB,PO平分∠BPA

圆内相交弦定理及其推论:

(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等

即:在⊙O中,∵弦AB、CD相交于点P

             ∴PA·PB=PC·PA

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O中,∵直径AB⊥CD

              ∴

(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

即:在⊙O中,∵PA是切线,PB是割线

              ∴

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)

即:在⊙O中,∵PB、PE是割线

              ∴

圆公共弦定理:连心线垂直平分公共弦

      即:∵⊙O1、⊙O2相交于A、B两点

          ∴O1O2垂直平分AB

圆内正多边形的计算

(1)正三角形  

 在⊙O中   △ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=

(2)正四边形

同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=

(3)正六边形

同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA=

弧长、扇形面积公式

(1)弧长公式:

 

(2)扇形面积公式:

相关推荐