高一物理必修1公式总结[1]

一, 质点的运动(1)----- 直线运动

1)匀变速直线运动

1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as

3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2

4.末速度V=Vo+at

5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2

6.位移S= V平t=V o t + at2 / 2=V t / 2 t

7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s

时间(t):秒(s) 位移(S):米(m) 路程:米

速度单位换算: 1m/ s=3.6Km/ h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度V_o =0 2.末速度V_t = g t

3.下落高度h=gt2 / 2(从V_o 位置向下计算)

4.推论V t2 = 2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )

3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)

5.往返时间t=2V_o / g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

平抛运动

1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt

3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2

5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )

6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2

合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o

7.合位移S=(S_x2+ S_y2) 1/2 ,

位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf

3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R

5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s

角速度(ω):rad / s 向心加速度:m / s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2

ω=(GM/R3)1/2 T=2π(R3/GM)1/2

5.第一(二、三)宇宙速度V_1=(g地

r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s

6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2

h≈36000 km/h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

三、 力(常见的力、力矩、力的合成与分解)

1)常见的力

1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近

2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)

3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)

4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力

5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上

6.静电力F=K Q_1Q_2 / r2 K=9.0×109 N·m2/C2 方向在它们的连线上

7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同

8.安培力F=B I L sinθ θ为B与L的夹角 当 L⊥B时: F=B I L , B//L时: F=0

9.洛仑兹力f=q V B sinθ θ为B与V的夹角 当V⊥B时: f=q V B , V//B时: f=0

注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。

2)力矩

1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离

2.转动平衡条件 M顺时针= M逆时针 M的单位为N·m 此处N·m≠J

有些超出高一了

第一章.运动的描述

考点三:速度与速率的关系

考点四:速度、加速度与速度变化量的关系

考点五:运动图象的理解及应用

由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。

1.         理解图象的含义

(1)       x-t图象是描述位移随时间的变化规律

(2)       v—t图象是描述速度随时间的变化规律

2.       明确图象斜率的含义

(1)       x-t图象中,图线的斜率表示速度

(2)       v—t图象中,图线的斜率表示加速度

第二章.匀变速直线运动的研究

考点一:匀变速直线运动的基本公式和推理

1.       基本公式

(1)    速度—时间关系式:

(2)    位移—时间关系式:

(3)    位移—速度关系式:

三个公式中的物理量只要知道任意三个,就可求出其余两个。

利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,

解题时要有正方向的规定。

2.       常用推论

(1)       平均速度公式:

(2)       一段时间中间时刻的瞬时速度等于这段时间内的平均速度:

(3)       一段位移的中间位置的瞬时速度:

(4)       任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等):

考点二:对运动图象的理解及应用

1.       研究运动图象

(1)       从图象识别物体的运动性质

(2)       能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义

(3)       能认识图象的斜率(即图象与横轴夹角的正切值)的意义

(4)       能认识图象与坐标轴所围面积的物理意义

(5)       能说明图象上任一点的物理意义

2.       x-t图象和v—t图象的比较

如图所示是形状一样的图线在x-t图象和v—t图象中,

 

                        

                

                            考点三:追及和相遇问题

1.“追及”、“相遇”的特征

“追及”的主要条件是:两个物体在追赶过程中处在同一位置。

两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。

2.解“追及”、“相遇”问题的思路

(1)根据对两物体的运动过程分析,画出物体运动示意图

(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中

(3)由运动示意图找出两物体位移间的关联方程

(4)联立方程求解

3.       分析“追及”、“相遇”问题时应注意的问题

(1)       抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。

(2)       若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动

4.       解决“追及”、“相遇”问题的方法

(1)       数学方法:列出方程,利用二次函数求极值的方法求解

(2)       物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解

考点四:纸带问题的分析

1.       判断物体的运动性质

(1)       根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。

(2)       由匀变速直线运动的推论,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。

2.       求加速度

(1)       逐差法

(2)v—t图象法

利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a.

 

第二篇:高一物理公式总结[1]

第一章 力

重力:G = mg

摩擦力:

(1) 滑动摩擦力:f = μFN 即滑动摩擦力跟压力成正比。

(2) 静摩擦力:①对一般静摩擦力的计算应该利用牛顿第二定律,切记不要乱用

f =μFN;②对最大静摩擦力的计算有公式:f = μFN (注意:这里的μ与滑动摩擦定律中的μ的区别,但一般情况下,我们认为是一样的)

力的合成与分解:

(1) 力的合成与分解都应遵循平行四边形定则。

(2) 具体计算就是解三角形,并以直角三角形为主。

第二章 直线运动

速度公式: vt = v0 + at ①

位移公式: s = v0t + at2 ②

速度位移关系式: - = 2as ③

平均速度公式: = ④

= (v0 + vt) ⑤

= ⑥

位移差公式 : △s = aT2 ⑦

公式说明:(1) 以上公式除④式之外,其它公式只适用于匀变速直线运动。(2)公式⑥指的是在匀变速直线运动中,某一段时间的平均速度之值恰好等于这段时间中间时刻的速度,这样就在平均速度与速度之间建立了一个联系。

6. 对于初速度为零的匀加速直线运动有下列规律成立:

(1). 1T秒末、2T秒末、3T秒末…nT秒末的速度之比为: 1 : 2 : 3 : … : n.

(2). 1T秒内、2T秒内、3T秒内…nT秒内的位移之比为: 12 : 22 : 32 : … : n2.

(3). 第1T秒内、第2T秒内、第3T秒内…第nT秒内的位移之比为: 1 : 3 : 5 : … : (2 n-1).

(4). 第1T秒内、第2T秒内、第3T秒内…第nT秒内的平均速度之比为: 1 : 3 : 5 : … : (2 n-1).

第三章 牛顿运动定律

1. 牛顿第二定律: F合= ma

注意: (1)同一性: 公式中的三个量必须是同一个物体的.

(2)同时性: F合与a必须是同一时刻的.

(3)瞬时性: 上一公式反映的是F合与a的瞬时关系.

(4)局限性: 只成立于惯性系中, 受制于宏观低速.

2. 整体法与隔离法:

整体法不须考虑整体(系统)内的内力作用, 用此法解题较为简单, 用于加速度和外力的计算. 隔离法要考虑内力作用, 一般比较繁琐, 但在求内力时必须用此法, 在选哪一个物体进行隔离时有讲究, 应选取受力较少的进行隔离研究.

3. 超重与失重:

当物体在竖直方向存在加速度时, 便会产生超重与失重现象. 超重与失重的本质是重力的实际大小与表现出的大小不相符所致, 并不是实际重力发生了什么变化,只是表现出的重力发生了变化.

第四章 物体平衡

1. 物体平衡条件: F合 = 0

2. 处理物体平衡问题常用方法有:

(1). 在物体只受三个力时, 用合成及分解的方法是比较好的. 合成的方法就是将物体所受三

个力通过合成转化成两个平衡力来处理; 分解的方法就是将物体所受三个力通过分解转化成两对平衡力来处理.

(2). 在物体受四个力(含四个力)以上时, 就应该用正交分解的方法了. 正交分解的方法就是先分解而后再合成以转化成两对平衡力来处理的思想.

第五章 匀速圆周运动

1.对匀速圆周运动的描述:

①.线速度的定义式: v = (s指弧长或路程,不是位移

②.角速度的定义式: =

③.线速度与周期的关系:v =

④.角速度与周期的关系:

⑤.线速度与角速度的关系:v = r

⑥.向心加速度:a = 或 a =

2. (1)向心力公式:F = ma = m = m

(2) 向心力就是物体做匀速圆周运动的合外力,在计算向心力时一定要取指向圆心的方向做为正方向。向心力的作用就是改变运动的方向,不改变运动的快慢。向心力总是不做功的,因此它是不能改变物体动能的,但它能改变物体的动量。

第六章 万有引力

1.万有引力存在于万物之间,大至宇宙中的星体,小到微观的分子、原子等。但一般物体间的万有引力非常之小,小到我们无法察觉到它的存在。因此,我们只需要考虑物体与星体或星体与星体之间的万有引力。

2.万有引力定律:F = (即两质点间的万有引力大小跟这两个质点的质量的乘积成正比,跟距离的平方成反比。)

说明:① 该定律只适用于质点或均匀球体;② G称为万有引力恒量,G =

6.67×10-11N·m2/kg2.

3. 重力、向心力与万有引力的关系:

(1). 地球表面上的物体: 重力和向心力是万有引力的两个分力(如图所示, 图中F示万有引力, G示重力, F向示向心力), 这里的向心力源于地球的自转. 但由于地球自转的角速度很小, 致使向心力相比万有引力很小, 因此有下列关系成立:

F≈G>>F向

因此, 重力加速度与向心加速度便是加速度的两个分量, 同样有:

a≈g>>a向

切记: 地球表面上的物体所受万有引力与重力并不是一回事.

(2). 脱离地球表面而成了卫星的物体: 重力、向心力和万有引力是一回事, 只是不同的说法而已. 这就是为什么我们一说到卫星就会马上写出下列方程的原因:

= m = m

4. 卫星的线速度、角速度、周期、向心加速度和半径之间的关系:

(1). v= 即: 半径越大, 速度越小. (2). = 即: 半径越大, 角速度越小.

(3). T =2 即: 半径越大, 周期越大. (4). a= 即: 半径越大, 向心加速度越小.

说明: 对于v、 、T、a和r 这五个量, 只要其中任意一个被确定, 其它四个量就被唯一地确定下来. 以上定量结论不要求记忆, 但必须记住定性结论.

第七章 动量

1. 冲量: I = Ft 冲量是矢量,方向同作用力的方向.

2. 动量: p = mv 动量也是矢量,方向同运动方向.

3. 动量定律: F合 = mvt – mv0

第八章 机械能

1. 功: (1) W = Fs cos (只能用于恒力, 物体做直线运动的情况下)

(2) W = pt (此处的“p”必须是平均功率)

(3) W总 = △Ek (动能定律)

2. 功率: (1) p = W/t (只能用来算平均功率)

(2) p = Fv (既可算平均功率,也可算瞬时功率)

3. 动能: Ek = mv2 动能为标量.

4. 重力势能: Ep = mgh 重力势能也为标量, 式中的“h”指的是物体重心到参考平面的竖直距离.

5. 动能定理: F合s = mv - mv

6. 机械能守恒定律: mv + mgh1 = mv + mgh2

 

第三篇:高中物理必修一公式大全

高中物理必修1公式

一.匀变速直线运动

1匀变速直线运动的六个基本公式

           ②            ③

   ⑤         ⑥

2.初速度为0的匀变速直线运动的特点

①从运动开始计时,t秒末、2t秒末、3t秒末、…、nt秒末的速度之比等于连续自然数之比:v1v2v3∶…∶vn=1∶2∶3∶…∶n.

  ②从运动开始计时,前t秒内、2t秒内、3t秒内、…、nt秒内通过的位移之比等于连续自然数的平方之比:s1s2s3∶…∶sn=12∶22∶32∶…∶n2

  ③从运动开使计时,任意连续相等的时间内通过的位移之比等于连续奇数之比:s1s2s3∶…∶sn=1∶3∶5∶…∶(2n-1).

  ④通过前s、前2s、前3s…的用时之比等于连续的自然数的平方根之比:t1t2t3∶…tn∶…∶

⑤从运动开始计时,通过任意连续相等的位移所用的时间之比为相邻自然数的平方根之差的比:t1t2t3∶…tn

3.自由落体运动的特点()

     ②    ③    ④image006  

4.匀变速其他推导公式

①中间时刻速度:       ②中间位移速度:

③任意连续相等时间T内位移差:

      任意连续相等时间kT内位移差:

二、力学

1、重力:G=mg(g值随地理纬度的增加而增大,随离地高度的增大而减小),重力的方向总是竖直向下的。

2、弹力F=kx (x为伸长量或压缩量,k为劲度系数) ,产生弹力的2个条件:①接触;②发生弹性形变

3摩擦力产生条件:①有弹力;②发生相对运动或具有相对运动的趋势;③接触面粗糙

(1)滑动摩擦力:f=uN ,N是两个物体表面间的压力,为滑动摩擦因数。

  (2)静摩擦力的大小:①静摩擦力大小与正压力无关,但最大静摩擦力的大小与正压力成正比。②最大静摩擦力一般比滑动摩擦力略大一点,但有时认为二者是相等的。③平衡时静摩擦力的大小与产生静摩擦力的外力的合力等值反向。④静摩擦力的取值范围是

注意:两物体间有弹力,不一定产生摩擦力,但物体间有摩擦力时,必有弹力产生。

4、力的合成

 、同向:合力方向与的方向一致

 、反向:合力,方 向与这两个力中较大的那个力同向。

③两个力的合力范围:F1-F2 F F1 +F2  

④合力可以大于分力、也可以小于分力、也可以等于分力

5、力的分解

(1)己知合力的大小和方向,-----有无数多组解(即可分解为无数对分力)

(2)己知合力的大小和方向,

①又知F1、F2的方向——有一组解

②又知F1、F2大小(F1F2)——有一组解

③又知F1的大小和方向——有一组解

④又知F1的方向及F2的大小:当F>F2>Fsin时——有两组解

                           当F2=Fsin时——有一组解

                           当F2>F时——有一组解

6.共点力作用下物体的平衡条件:F=0(静止或匀速直线运动)

①二力平衡:大小相等,方向相反,作用在同一条直线上,作用在一个物体上。

②三力平衡:任意两个力的合力必与第三个力等值反向,用三角形法则

③若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解

三、牛顿定律

1、牛一定律:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.

(1)物体不受外力是该定律的条件.

(2)物体总保持匀速直线运动或静止状态是结果.

(3)直至外力迫使它改变这种状态为止,说明力是产生加速度的原因.

(4)物体保持原来运动状态的性质叫惯性,惯性大小的量度是物体的质量.

(5)注意:①牛顿第一定律不是实脸直接总结出来的.牛顿以伽利略的理想斜面实脸为基拙,加之高度的抽象思维,概括总结出来的.不可能由实际的实验来验证;

②牛顿第一定律不是牛顿第二定律的特例,而是不受外力时的理想化状态.

③揭示了力和运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因.

2、牛顿第三定律:两物体之间的作用力与反作用力总是大小相等,方向相反,F=-F/   

作用力和反作用力与一对平衡力的联系和区别

3、牛顿第二定律:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F的方向总是相同,F=ma

动力学的两大基本问题求解:   受力情况运动情况,联系力和运动的桥梁是a

4、运用牛顿运动定律解决物体的超重与失重问题

(1)物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象,称为超重现象。超重时物体的加速度向上。

(2)物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象,称为失重现象。失重时物体的加速度向下。

(3)如果物体正好以大小等于g的加速度加速下落减速上升时,处于完全失重状态。

(4)注意:超重和失重现象中,地球对物体的实际作用力(重力)并没有变化

5、力学单位制

在国际单位制(SI)中,力学的基本物理量有长度、质量和时间,对应的基本单位是m、Kg和s,除力学中的三个外,还有电流、热力学温度、物质的量、发光强度这四个,对应的单位是A、K、mol、cd。

基本物理量根据物理公式推导出来的其他物理量的单位,叫做导出单位。如力、速度、加速度等的单位。

相关推荐