电力电子实验总结

电力电子技术实验总结

随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。

本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验.

单结晶体管触发电路实验

实验目的

(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的基本调试步骤。

实验线路及原理 单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和RC充放电特性,可 组成频率可调的自激振荡电路。V6为单结晶体管,其常用型号有BT33和BT35两种,由等效电阻V5和C1组成RC充电回路,由C1-V6-脉冲变压器原边组成电容放电回路,调节RP1电位器即可改变C1充电回路中的等效电阻,即改变电路的充电时间。 由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,V6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使得V6重新关断,C1再次被充电,周而复始,就会在电容C1两端呈现锯齿波形,在每次V6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容C1的充电时间常数由等效电阻等决定,调节RP1电位器改变C1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。

实验内容

(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察。

单相半波整流电路实验

实验目的

1、熟悉强电实验的操作规程;

2、进一步了解晶闸管的工作原理;

3、掌握单相半波可控整流电路的工作原理。

4、了解不同负载下单相半波可控整流电路的工作情况。

实验原理

1、晶闸管的工作原理 晶闸管的双晶体管模型和内部结构如下: 晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降

到接近于零的某一数值一下。

2.单相半波可控整流电路(电阻性负载) 2.1电路结构 若用晶闸管T替代单相半波整流电路中的二极管D,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50HZ正弦波,负载 RL为电阻性负载。

三相半波有源逆变电路实验

实验目的

1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

2、观察逆变失败现象,并研究逆变失败产生原因及预防措施

注意事项

(1)参照三相半波可控整流实验的注意事项

(2)电阻调节要缓慢进行,以防主电路电流过大,损坏晶闸管.

实验内容

三相半波整流电路在有源逆变状态工作下带电阻电感性负载的研究。 单相交流调压电路实验

实验目的

1加深理解单相交流调压电路的工作原理;

2加深理解单相交流调压电路带阻感性负载对脉冲及移相范围的要求; 3了解KC05晶闸管移相触发器的原理和应用。

实验内容

1KC05 集成移相触发电路的调试;

2单相交流调压电路带电阻性负载;

3单相交流调压电路带阻感性负载。

相对来说,这门实验课程的线路连接及线路实验原理 并不复杂,最困难的是是完成试验线路连接以后所进行的调试与操作,难以得出相关的正确的波形以及争取的结果和参数。这是由于对实验的过程及原理理解的不深刻,对相关的知识掌握的不够透彻,不能熟练应用到实际操作以及应用当中。并且动手能力不够强,对实验过程不熟悉,实验操作生疏,缺乏相关的实际操作经验以及实际操作技巧,遇到实际操作中的问题难以独立解决,如何下手。对操作过程中的错误以及故障难以发现排除。

《电力电子技术》遵循的学习思路为:理论联系实践,实践促进创新。在学习该课程的过程中,注重对基本概念和基本方法的理解,在理论推导中引出工程应用的概念,在实例分析中强化理论概念,加深了我们对电力拖动自动控制系统的认识和理解。本课程综合性、理论性和实践性都较强,要求我们在掌握基本理论的基础上,能综合运用学过的专业知识,根据生产工艺的具体要求,实现对电机的控制和对一般自动控制系统的分析和设计,从而培养了我们学生的理论联系实际的能力、分析问题和解决问题的能力。

虽然实验台只是一个小型的模拟平台,但是通过对它的学习和操作,我们对有关的知识将会有一个更广泛的认识,而且它对我们以后的学习也会有帮助的。 实验中个人的力量是不及群体的力量的,我们分工合作,做事的效率高了很多。虽然有时候会为了一些细节争论不休,但最后得出的总是最好的结论。而且实验也教会我们在团队中要善于与人相处,与人共事,不要一个人解决所有问题。 总之,这次课程设计对于我们有很大的帮助。通过这次课程使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的

理论知识与实践相结合起来,从理论中得出结论,才能真正提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。

这次课程使我学到了更多实用的知识,让我对实验设备及实验原理有了更进一步的认识。通过本次的实验课程,我还发现自己以前学习中所出现的一些薄弱环节,并为今后的学习指明了方向,同时也会为将来的工作打下一个良好的基础。这次的实验课程为我们提供了一个很好的锻炼机会,使我们及早了解一些相关知识以便以后运用到实际中去。通过这次的实验课程,我知道只有通过刻苦的学习,加强对知识的熟练掌握程度,在现实的中才会得心应手,应对自如。

总体来说,经过这次实验课程,我还从中学到了很多课本上所没有提及的知识。我会把这此实验课程作为我人生的起点,在以后的工作学习中不断要求自己,完善自己,让自己做的更好。

实验过程中,获得了很多收获,获得了很多感悟,当然也遇到了很多困难。但我们都一一克服了他们,成功的完成了实验。并在解决问题,克服困难的过程中,发现了自己平时忽略的,隐藏的问题,以及一些不该出现的粗心大意的小毛病。通过这些,我们认识的更加深刻,了解的更加深入。做到了学以致用,对知识掌握得更加牢固。通过了这的学习,真的对它有了一个全新的认识,我会坚持对它的学习,使自己一个长足的提高!

 

第二篇:电工电子实验总结

电工电子知识的学习离不开实验,实验能启发我们的思维,展现我们的个性,调动我们积极性,培养我们的动手能力和创造能力。

在得知我们有实验前,我就有些好奇,我们在实验课上会做些什么呢,会用到哪些实验器材呀,又将会有什么收获呢等一串串疑问不停地在我脑海里回荡。第一次接触电工电子实验,我对其有了一些了解,也在做了第一个试验后,我发现它似乎与我有了不解之缘,让我对其产生浓厚的兴趣。“兴趣是最好的老师”,也是兴趣让我学会了好多好多的知识。

这一学期,我们在短短的十五个学时内做了五个电路与电工实验,“量多不如质好”,做好这几个实验也有不少的功效的。电路与电工实验属于基础性试验,主要是对其基本理论的验证,让我们学生通过基础性试验掌握基本的实验方法与实验技能,并具备观察现象的能力,未进行设计性、综合性实验打下基础。我们所做的分别是基尔霍夫定律和叠加原理的验证,电压源与电流源的等效变换,戴维南定理和诺顿定理,R、L、C元件阻抗特性的测定以及R、L、C串联谐振电路的研究这五个实验。

身为工科类学子,我们每个人都知道,无论做什么实验,参加试验者应该对实验内容进行预习,要明确实验目的要求,以避免盲目性。对于这几个实验,我们应严以律己,对自己要求要高,需提前掌握有关电路的基本原理,拟出试验方法和步骤,设计实验表格,对思考题做出解答,初步估算实验结果(包括参数和波形),做出预习报告。

预习报告,这个东西,是实验不可缺少的,他包括以下几个步骤:(1)实验目的 (2)实验设备 (3)实验原理 (4)实验内容 (5)注意事项 (6)实验报告。俗话说,“未来之事先有预兆”,想做好实验也得要预习呀!要养成好习惯。

以下是我对这五个实验的总结:

一、基尔霍夫定律和叠加原理的验证

基尔霍夫定律是任何集总参数电路都适用的基本定律,测量某电路的各支路电流及多个元件两端的电压,能分别满足基尔霍夫电流定律和电压定律。对电路中的任一个节点而言,有 ∑Ii=0 ——基尔霍夫电流定律,而对任何一个闭合回路而言,则有 ∑Ui=0——基尔霍夫电压定律。与其一起的还有叠加原理,叠加原理是指:在多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源作用时在该元件上所产生的电流或电压的代数和。线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各元件上所建立的电流和电压值)增加或减少K倍。

当此实验做完后,我们另外又测了几组实验数据。我们将其中一个电阻器改为二极管(理想二极管是单向电阻),重复该实验步骤,将数据记入表格后,验证发现忽略实验误差后叠加原理的迭加性和齐次性还成立。我们充分利用多余的实验时间,有了新的发现。

二、电压源与电流源的等效变换

做好这个实验,我先得了解电压源和电流源的相关知识。一个直流稳压源在一定的电流范围内,具有很小的内阻,将它视为一个理想的电压源,即其输出电压不随负载电流而变。其外特性曲线,即其伏安特性曲线U=f(I)是一条平行于I轴的直线。一个恒流源在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载两端的电压(亦即负载的电阻值)而变。

一个电压源与一个电流源等效变换的条件是:

电压源变换为电流源: Is=Us∕Ro , Go=1/Ro

电流源变换为电压源: Us=Is Ro , Ro=1/Go

所以一个实际的电压源既可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源Us与一个电阻Ro相串联的组合来表示;若视为电流源,则可用一个理想的电流源Is与一个电导Go相并联的组合来表示。

三、戴维南定理和诺顿定理

戴维南定理是指:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电压源视为开路)时的等效电阻。诺维定理是指:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流Isc,其等效内阻Ro也等于该网络中所有独立源均置零(理想电压源视为短接,理想电压源视为开路)时的等效电阻。

此实验是验证戴维南定理和诺顿定理的正确性以及对有源二端网络等效参数的测量。总结有源二端网络等效参数的测量方法有四种:(1)开路电压、短路电流法测Ro (2)伏安法测Ro (3)半电压法测Ro (4)零示法测Uoc

四、R、L、C元件阻抗特性的测定

在正弦交变信号作用下,R、L、C元件在电路中的抗流作用与信号的频率有关阻抗频率曲线R~f是一条不过原点稳定不变的直线,X~l是一条过原点的呈正比例的直线,X~c是一条递减的曲线。

我们还用了示波器来测量阻抗角,方法是从荧光屏上数得一个周期占n格,相位差占m格,则实际的相位差a(阻抗角)为

a = m * 360°/n 度。

五、R、L、C串联谐振电路的研究

实验中,我们认识了两个新的物理量——电路品质因数Q和谐振曲线的通频带宽度△f,实验根据这两个物理量和电路的关系来理解电路发生谐振的条件、特点。在R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路的感抗、容抗随之而变。电路中的电流也随之改变。在谐振频率fo处,即幅频特性曲线尖峰所在的频率点,此时Xl =Xc,电路呈阳性,电路阻抗的模为最小。在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui同相位。从理论上讲,此时Ui =Ur=Uo,Ul=Uc=QUi,所以,当R取不同值是对电路通频带与品质因数没有影响。

对于测量电路品质因数有两种方法:一是根据公式Q=Ul/Uo=Uc/Uo测定,Uc与Ul分别为谐振是电容器C和电感线圈L上的电压:另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据Q=fo/(f2-f1)求出Q值。实验得出,Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。

实验做完了,这学期也快结束了,但是我们的任务并没有完成,学无止境。一次次的实验会留给我们更多的思考,也犯过很多次错误,但是“金无足赤人无完人,孰能无过?”“知错能改善莫大焉”,无论如何我们得动手去做,我相信一次的亲身经验抵过两次的老师指导。有些我以前不懂的,不会使用的实验设备,现在也会了,五个实验已成功的做完了。习惯成自然,熟能生巧,养成好的做实验的习惯对做好实验很重要。集腋成裘,以后也多动手实验,珍惜每次的实验机会,认真做实验。

教育信息与技术学院

信息工程 0802班

何 欣

相关推荐