霍尔效应的应用(实验报告)

霍尔效应及其应用

一、实验目的

1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。

   2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM曲线。                                                                                                                                                       

   3.确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:                                              

   

N型半导体的多数载流子为电子,P型半导体的多数载流子为空穴。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有

                                     显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与Fg方向相反的横向电场力:              FE=eEH                 

其中EH为霍尔电场强度。

FE随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力e EH与洛仑兹力    相等,样品两侧电荷的积累就达到平衡,

,只要测出VH(伏)以及知道Is(安)、B(高斯)和d(厘米)可按下式计算RH(厘米3/库仑)。

                                              由RH求载流子浓度n

由比例系数        得,         。

3.结合电导率的测量,求载流子的迁移率μ

    电导率σ与载流子浓度n以及迁移率μ之间有如下关系:

            σ=n eμ                         

由比例系数        得,μ=|RH|σ,通过实验测出σ值即可求出μ。

三.实验步骤

1. 连接测试仪和实验仪之间相应的Is、VH和IM各组连线,Is及IM 换向开关投向上方,表明Is及IM均为正值(即Is沿X方向,B沿Z方向),反之为负值。VH、Vσ切换开关投向上方测VH,投向下方测Vσ。经教师检查后方可开启测试仪的电源。

 2. 为了准确测量,应先对测试仪进行调零,即将测试仪的“Is调节”和“ IM调节”旋钮均置零位,待开机数分钟后若VH显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。

3. 测绘VH-Is曲线

    将实验仪的“VH、Vσ”切换开关投向VH侧,测试仪的“功能切换”置VH

    保持IM值不变(取IM=0.6A),测绘VH-Is曲线。

4.测绘VH-Im曲线。实验仪及测试仪各开关位置同上。 保持Is值不变,(取Is=3.00mA),测绘VH-Is曲线。

    5. 测量Vσ

    将“VH、Vσ”切换开关投向Vσ侧,测试仪的“功能切换”置Vσ。 在零磁场下,取Is=2.00mA,测量Vσ。注意:Is取值不要过大,以免Vσ太大,毫伏表超量程(此时首位数码显示为1,后三位数码熄灭)。

    6. 确定样品的导电类型。将实验仪三组双刀开关均投向上方,即Is沿X方向,B沿Z方向,毫伏表测量电压为VAA´。取Is=2mA,IM=0.6A,测量VH大小及极性,判断样品导电类型。

7.求样品的RH、n、σ和 µ 值。

四.数据处理

1.测绘VH-Is曲线

    表1   IM=0.6A   Is取值:1.00-4.00 mA。

    2.测绘VH-Im曲线

    表2   Is=3.00mA  IM取值:0.300-0.800A。

3.Vσ=172.9mV.

4. VH=-7.13mV<0,所以为N型

有图可得B RH1/d=-3.56得RH1=-8.67 *10^6cm ^3.c

和由0.1xIs RH2/d=-17.89得RH2=-8.69 *10^6cm ^3.c

测绘VH-Is曲线

测绘VH-Im曲线

由上面可得平均RH=-8.68*10^6cm3.c

             n=1/( |RH|*e) =7.2*10^11个/cm3

          

           =10.41mA/mV*cm2

  

μ=|RH|σ= 9.03*10^7 mA/mV*c

五.思考题:

如已知霍尔样品的工作电流Is及磁感应强度B的方向,如何判断样品的导电类型?

答: 由RH 的符号(或霍尔电压的正、负)判断试样的导电类型 判断的方法是按图(1)所示的Is和B的方向,若测得的VH=VAA'<0,(即点A的电位低于点A´的电位)则RH 为负,样品属N型,反之则为P型。

 

第二篇:霍尔效应的应用实验报告

一、       名称:霍尔效应的应用

二、       目的:

1.霍尔效应原理及霍尔元件有关参数的含义和作用

2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。

3.学习利用霍尔效应测量磁感应强度B及磁场分布。

4.学习用“对称交换测量法”消除负效应产生的系统误差。

三、       器材:

1、实验仪:

(1)电磁铁。

(2)样品和样品架。

(3)Is和IM 换向开关及VH 、Vó 切换开关。

2、测试仪:

(1)两组恒流源。

(2)直流数字电压表。

四、       原理:

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。如图15-1所示的半导体试样,若在X方向通以电流 ,在Z方向加磁场,则在Y方向即试样 A-A电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N型试样,霍尔电场逆Y方向,(b)的P型试样则沿Y方向。即有

          

显然,霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力与洛仑兹力相等,样品两侧电荷的积累就达到动态平衡,故

                      (1)          

其中为霍尔电场,是载流子在电流方向上的平均漂移速度。

设试样的宽为b,厚度为d,载流子浓度为n ,则

                                       (2)

由(1)、(2)两式可得:                         (3)

即霍尔电压(A 、A电极之间的电压)与乘积成正比与试样厚度成反比。比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出 (伏)以及知道(安)、(高斯)和(厘米)可按下式计算(厘米3/库仑):RH                        (4)           

上式中的10是由于磁感应强度用电磁单位(高斯)而其它各量均采用CGS实用单位而引入。

由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的VH值,因此必需设法消除。根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。具体的做法是Is和B(即IM)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is和B(即IM)时的V1,V2,V3,V4

1)+Is    +B      V1

2)+Is    -B       V2

3)-Is     -B      V3

4)-Is    +B       V4

然后求它们的代数平均值,可得:

通过对称测量法求得的VH误差很小。

另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I与u的关系为:

……(5),则可得到 ……(6),令,则 …… (7),R称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。

在应用中,(6)常以如下形式出现:  ……(8) ,式中称为霍尔元件灵敏度,I称为控制电流。

可见,若I、KH已知,只要测出霍尔电压VBB’,即可算出磁场B的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由VBB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

由于霍尔效应建立所需时间很短(10-12~10-14s),因此霍尔元件使用交流电或者直流电都可。指示交流电时,得到的霍尔电压也是交变的,I和VBB’应理解为有效值。

五、       步骤:

1、测量霍耳电压与工作电流的关系。

① 对测试仪进行调零。将测试仪的“调节”和“调节”旋钮均置零位,待开机数分钟后若显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。

② 测绘-曲线。将实验仪的“”切换开关投向侧,测试仪的“功能切换”置,保持值不变(取=),绘制-曲线。

2、测量霍耳电压与工作电流的关系。

      实验仪与测试仪各开关位置同上。保持半导体的电流不变(取=),绘制-曲线。

3、测量值。将切换开关“”投向侧,“功能切换”置。在零磁场下,取=2.00mA,测量

4、确定样品的导电类型。将实验仪三组双刀开关均投向上方,即沿X方向,沿Z方向。毫伏表测量电压为。取=2.00mA  =0.6A,测量大小及极性,判断样品导电类型。

5、 求样品,n,,μ值。

六、记录:

1.测绘曲线,保持IM=0.6A、IS=1.00~4.00mA不变,在表格中记录霍尔电压。

2.测绘曲线,保持Is=3.00mA;Im=0.300~0.800A不变,在表格中记录霍尔电压。

测得:V=130.6mV

Vh=-5.40mV

七、   数据处理:

   1、根据数据表作出曲线图:

 

2、在零磁场下,取=2.00mA,测出=130.6mV

3、确定样品的导电类型。测出霍耳电压=-5.40mV<0,故样品属N型。

4、求样品,n,,μ值。

(1)由分别求出表1、2的,再求出其平均值,得

(2)

(3)

(4)

八、   预习思考题:

1、霍耳元件为什么要用半导体材料,而且要求做得很薄?霍尔电压是如何产生的?

答:半导体材料的迁移率高,电阻率适中,是制造霍耳器件较理想的材料。

2、     工作电流和磁场为什么要换向?实际操作时如何实现?

答:为了把产生霍耳效应的时候所伴随的副效应的影响从测量的结果中消除。实际操作时通过切换实验仪三组双刀开关改变电流和磁场的方向。

3、     回答分别表示什么含义?的作用分别是什么?

答:表示样品工作电流;表示励磁电流;表示存在磁场时的霍耳电压;表示在零磁场下的霍耳电压。的作用是改变电流大小和方向,的作用是改变磁场的大小及方向。

4、     霍耳效应有哪些应用?

答:在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器。

九、操作后思考题:

1、     如何精确测量霍耳电压?本实验采用什么方法消除各种附加电压?

答:设法消除产生霍尔效应时伴随的多种副效应。本实验采用电流和磁场换向的所谓对称测量法。

2、磁场不恰好与霍耳片的法线一致,对测量结果有何影响?

答:磁场不与霍尔片垂直,只有其法向分量能起作用,即霍尔片产生的霍尔电压会减小。

3、     能否用霍耳元件片测量交变磁场?若能,怎样测量?

答:能。

4、     如何根据的方向,判断所测样品为N型半导体还是P型半导体?

答:先设定的参考正方向:例如设定从左向右为正,垂直纸面向内为正,正电荷向上偏转,则从下向上为正。然后将测量仪器按参考正方向连接。电流表要左边接红表笔,右边接黑表笔,电压表要下表面接红表笔,上表面接黑表笔。然后将均调为正,观察电压表的正负。根据,如果电压表为负数,则灵敏度,电子导电,N型半导体;如果电压表为正数,,空穴导电,P型半导体。

5、     请根据欧姆定律推导出(电导率为电阻率的倒数)。

答:欧姆定律,电阻 ,则有  ,而,故电导率 

6、     本实验的误差的主要误差有哪些,这些误差对实验有何影响?

答:主要误差有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。这些误差会影响霍耳系数的计算,从而影响到载流子浓度n和迁移率的计算。

相关推荐