模电心得

“模拟电路太难了,怎么学呀?怎样快速入门呢?”

“这个模拟电路实现了什么功能?”

“三极管驱动电路周边的电阻值怎么计算?”

“怎样设计模拟电路实现XXX功能啊?用什么电路形式?选什么器件?参数是什么?”

“仿了一个模拟电路,怎么指标就是达不到原先的水准呢?”

“10uV信号怎么放大到10V?”

......

模拟电路并不难学,难的是长期积累,有老师指点,坚持做实验。

我们首先介绍什么是模拟电路,时代划分,模电开发需要具备的能力,模电难在哪里,模电涉及的内容,元器件选型,然后用实例进行读图训练,计算电路参数,设计指导.

------------

模拟电路介绍

------------

模拟电路(Analog Circuit):处理模拟信号的电子电路。模拟信号:时间和幅度都连续的信号(连续的含义是在某取值范围内可以取无穷多个数值)。工业控制里的温度、液面、压力、流量、长 度等都是连续的模拟量。

模拟信号的特点:

1、函数的取值为无限多个;

2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。

----------------

模拟电路时代划分

----------------

50年代前 电子管

19xx年 晶体管诞生,以半导体器件为核心

19xx年 集成电路问世

19xx年 大规模集成电路问世,品种齐全

19xx年 超大规模集成电路问世,价格下降

随着器件的不断发展,模拟电路的应用和教学也经历了以电子管为中心;以晶体管为中心;以集成电路(如:运放)为中心等多个阶段。

翻开很早以前的模电教材,都是以电子管为核心讲解电路原理的,那时的收音机、电视机、扩音器、电台等都是电子管的。现在仍然有不少音响发烧友使用电子管做功放,做收音机,称之为“胆机”,看着电路放音时,一堆灯丝闪动,别有一番DIY乐趣,据说可以听出特别的味道,只是现在电子管不太好买了。

后来的模电教材主要以分立的晶体管元件为核心,这一时期的收音机、扩音器等都改成晶体管的了,现在模电实验课还有七管超外差调幅收音机实习。尽管现在很少产品完全使用分立元件设计,但是大学课本仍然以这些分立器件为核心授课,究其原因,晶体管毕竟是集成电路的基础,学好这些分立器件,才能更好地理解集成电路。目前一些分立晶体管主要用在驱动电路中,比如:驱动数码管、继电器等,完全使用分立元件实现的模拟电路越来越少了。

现在我们已经到了超大规模集成电路时代,真正的产品大多是由集成电路实现的。可是一些初学者由于大学课本教的是分立元件,所以不习惯用集成电路。看到有网友设计一个指标较高的放大电路,仍然首先考虑用三极管搭,现在都什么年代了,有运放为什么不用!集成电路体积小、功能强、性能稳定、成本低(单位晶体管价格),现在设计模拟电路首选集成电路。不过,集成电路的设计方法和原来分立器件的又有不同,复杂的设计由模拟IC厂商完成,使用者最重要的能力是选择合适IC。

综上所述,时代不同,模拟电路的学习和应用侧重点就不同。现在分工比较细:模拟IC芯片设计,板级应用设计,EDA工具开发,射频,测量仪器,EMC设计等等,根据你的方向,有选择地重点学习,效果较好。

----------------------

模电开发需要具备的能力

----------------------

模拟电路课程的学习目的是:掌握电子技术的基本概念,基本电路,基本分析方法,基本实验技能。尤其需要强调的是模电学习,实验不可少。

模电开发需要具备的能力:

1、读图能力

定性分析。能够正确分析出一张模拟电路原理图所要实现的功能。

经常看到论坛上一堆人把同一个电路图分析出10多种不同功能,而且居然没一个分析对的。本来想让大家一起分析出个正确答案,但是结论不收敛,谁也说服不了谁,大多数都分析错了,越分析越乱,所以给大家造成了模电难学的错觉。其实,这就是缺乏读图能力训练造成的。如果连图都看不懂,定性分析功能也不会,那么就别指望后面的定量分析,设计调试了。读图能力是学

好模电的基础。拥有这个能力后,你才能考虑自学模电。后面我们将用实例说明如何把复杂的总原理图分解成若干基本部分,如何分析估算,如何举一反三。

2、估算能力

定量分析。能够正确估算出一张模拟电路原理图中各元件参数值。

注意:这里特别强调“估算”,因为模拟电路分散性,只能近似估算。模电定量分析属于工程问题,你不能指望得到精确解,只能得到大概数据,然后做实验验证。前面也说过,模电的实验不能少。

经常看到论坛上有人问元器件(电阻、电容、电感等)的取值,然后众人给出一堆答案,都不带重样的。这又给大家造成了模电难学的错觉。其实,主要是缺乏定量估算能力造成的。估算能力需要不断训练,不断积累,了解各种电路形式,各种数学模型,计算流程,计算公式,经验公式。估算能力的提高没有捷径可走,只能一点一滴,循序渐进地积累,不过,如果多看一些前人总结好的范例,并能举一反三,那么,提高快一点还是有可能的。

3、选择能力

独立设计能力。能够根据功能指标要求,选择电路形式,选择合适器件,选择合适元器件参数。

到这一步,已经具备独立设计能力了。这三步有先后顺序,先会读图,给出一张图能够分析出功能,然后,能够估算给定图纸各元器件参数值,最后,能选择合适电路实现指定功能。

经常看到论坛上有人问实现某功能该选择那种型号的三极管、运放,该选哪个厂商生产的,用什么电路形式比较好,具体参数怎么确定云云。很明显,缺乏选择能力,不能独立设计电路。

你想选择合适元器件,就必须事先积累大量元器件信息,否则,连个选择范围都没有,还谈什么选择啊,对吧。比如:你想选个合适的运放,那么你就必须事先搜集十几种运放的数据手册,然后才能开始选择。选择电路形式同样需要事先积累,建议把各种电路形式列出对比表备查。至于选择合适的元器件参数,那就得经常用啦,熟能生巧,用多了自然能轻松选择。总之,选择能力需要长期积累,长期实践。当然,从工程角度来说,找第三方咨询,利用第三方平台弥补自己积累的不足,也是行之有效的办法。毕竟,具备独立设计能力是个漫长的修炼过程,可工作也要按时完成,正确的观念和方法才能解决这个二难困境,后面会谈谈这方面的心得体会。

4、调试能力

动手能力,具体实现。根据设计出来的图纸,实际制作出符合要求的硬件电路。

仅有图纸,只能说刚完成一半工作量,模电设计从出图到硬件实现还有很长很长的路要走。

经常看到论坛上有人问,参照某图纸设计的硬件出现这样那样的问题。比如自激、啸叫、干扰辐射、不稳定、噪声淹没有效信号、各项指标达不到等等。很多人感到模电难学的一个重要原因是,即使你有一个好的图纸,也并不能组装出达到预期效果的设备,常常要在调试上花费大量的时间和精力。模拟电路技术不仅是种实验技术,还是种工艺技术,容易防盗版,即使盗版者拥有电路图,拆解了设备,如果没有一定的模电功底,高超的工艺技术,照样仿造不出来。利用这一特性,在数字电路中加入适当的模拟电路,控制关键部件,进而掌控供应链,获得最大利润。

还是前面说过的,模电的实验不能少,第三次强调了。就象写程序需要调试一样,模电调试更是家常便饭,而且困难得多,大部分是体力活。首先要了解各种测试方法,其次要熟练掌握常用仪器的使用,这些需要长期积累实践,多做实验。另外,模拟电路的电磁兼容EMC设计非常重要,模拟电路的EMC设计可比数字电路的难度大多了,不过本文档将不涉及这方面的重要内容,而是将其放在《快快乐乐跟我学EMC设计》中统一讨论。

------------

模电难在哪里

------------

很多人都说模电很难学,到底难在哪里呢?我们尝试归纳了一些原因,不一定全面,但足够说明问题。

1、模电实验多。

获得元器件原始数据,测试,验证,调试,总结经验公式等都需要做大量实验,因此实验设备必不可少,比如:示波器、信号发生器、电子负载、实验电源等,而大多数人没有财力购置全套实验设备,或者只能购买低档型号,这就给学习和应用带来了限制,不是每个人都有机会拥有开发实验环境。如果计算机程序出错,只要单步调试就可以了,而调试模拟电路,必须设计实验方案,做大量实验,费时费力费钱。

经常看到论坛上有人问某某电路工作不正常到底是什么原因的问题,其实不用问任何人,用仪器调试一下就知道了。如果程序工作不正常,那就单步跟踪。如果DIP封装芯片没有器件手册,那就直接用尺子量。同样,如果模拟电路工作不正常就用示波器等仪器定位错误。可能很多人手头没有测试设备,所以不得不一遇到问题就到处问人吧。

2、理论和实践脱节

教科书上全是针对理想器件进行理论分析的,可是实际使用的器件不是理想的。这不能怨教材误导,用理想器件分析可以抓住主要矛盾,便于说明本质问题,但这样做会隐藏很多细节问题,看书时什么都明白,一到实践就什么都不明白了。

比如:电感存在寄生电容,电容存在引线电感,由LC构成的低通滤波器并不能滤除很高频率的

噪声,因为当频率很高时,噪声会直接通过电感的寄生电容旁路到输出端,此时电感失效,同样,大电容在高频时引线电感不能忽略,也不会滤除高频,所以,LC低通滤波并不是你想象的那么完美。如果噪声频率更高,一小段导线都会成为天线,将能量发射出去,更不会经过LC低通了。很多人看书明白了LC低通滤波原理,但就是弄不明白为什么加了LC低通后仍不能有效滤除高频噪声的原因。

再比如:用书上的公式计算出了电感值,但教科书上并没有讲怎么实际绕制电感,用多粗的漆包线?绕几匝?用什么材料的磁芯?多大的体积?什么形状?开不开气隙?怎么绕?工艺要求?......看书时很明白,一到实践才知道这么多不懂的。

放大器的数学表达很简单,就是输入信号乘以一个常数A(放大倍数),但是实际电路很复杂,因为放大器、电阻有噪声,地不理想,运放还有频率响应、零点飘移、线性区、温度/湿度影响、增益补偿、输入输出阻抗、电源等诸多问题需要考虑。总之,模拟电路设计就是与干扰做斗争,大部分电路是用来抗干扰的,主功能电路往往非常简单。所以,模拟电路的难点在于抗干扰,需要考虑的细节很多很多。

3、灵活多变,器件难买

模拟电路不象数字电路那么标准化,解决方案灵活多变,实现同一个功能可能有成千上万种选择,从好处讲,方案多可以让我们有更多选择余地,优中选优,从坏处讲,需要长期修炼,积累大量元器件、典型电路、仪器使用、分析问题的知识。

模拟器件品种繁多,不太容易收集齐全,比如:某些型号的电子管、中周、变压器、磁性元件、运放停产了,某些不单卖,某些是假货/翻新货等等。现在是超大规模集成电路时代了,如果买不到相应型号的IC,没办法自制。

另外,模电对数学功底有一定要求。模型抽象、近似估算、经验公式都要求有数学能力。 ------------

模电学习内容

------------

一.半导体器件

包括半导体特性,半导体二极管,双极结性三极管,场效应三级管等

二.放大电路的基本原理和分析方法:

1.原理 单管共发射极放大电路;双极性三极管的三组态---共射 共基 共集;场效应管放大电路--共源极放大,分压自偏压式共 源极放大,共漏极放大;多级放大。2方法 直流通路与交流通路;静态工作点的分析;微变等效电路法;图解法等等。

低频小信号放大电路

高频放大电路

三.放大电路的频率响应

单管共射放大电路的频响--下限频率,上限频率和通频带频率失真波特图多级放大电路的频响

四.功率放大

互补对称功率放大电路—— OTL(省去输出变压器),OCL(实用电路)

五.集成放大电路

偏置电路,差分放大电路,中间级,输出级。

六.放大电路的反馈

正反馈和负反馈

负反馈:四组态——电压串联,电压并联,电流串联,电流并联负反馈。(注意输出电阻和输入电阻的改变)

负反馈的分析:Af=1/F

七.模拟信号运算电路(运放电路)

理想运放的特点(虚短 虚地);

比例运放(反向比例运放,同向比例运放,差分比例运放);

求和电路(反向输入求和,同向输入求和)

积分电路,微分电路;

对数电路,指数电路;

乘法电路,除法电路。

八.信号处理电路

有源滤波器(低通LPF,高通HPF。带通BPF,带阻BEF)

电压比较器(过零比较器,单限比较器,滞回比较器,双限比较器)

九.波形发生电路(振荡电路)

正弦波振荡电路(条件,组成,分析步骤)

RC正弦波振荡电路(RC串并联网络选频特性)

LC 正弦波振荡电路 (LC并联网络选频特性 电感三点式 电容三点式)

石英晶体振荡器

非正弦波振荡器(矩形波,三角波,锯齿形发生器)

十.直流电路

单相整流电路

滤波电路(电容滤波,电感滤波 ,复式滤波)

倍压整流电路(二倍压整流电路,多倍压整压电路)

串联型直流稳压电路

十一.调制/解调电路

调幅、调频、调相

--------

常用元件

--------

电阻 ...

电感 ...

电容 ...

二极管:

参数:

平均正向整流电流(最大值)IF、反向耐压(最大值)VRM、重复正向电流峰值(最大值)IFRM、正向浪涌电流峰值(最大值)IFSM、正向压差环境温度25°C(最大值)Vr、反向电流环境温度25°C(最大值)IR、重复反向峰值耐压、正向平均整流电流、连续反向耐压、封装、主要用途、生产厂家、产品编号、规格书、价格

型号:

1N4007、1N4148、BAV70、BAV99、BAW56

三极管:

参数:

集电极电流Ic、集电极-基极电压Vcbo、集电极-发射极极电压Vceo、发射极-基极电压ebo、功耗Pc、增益hfe、封装、工作温度、频率响应、主要用途、生产厂家、产品编号、规格书、价格

型号:

8050、9013、9014、BC817、8550、9012、9015、BC807、4401、4403

BC557B、2N3904、2N3906、BC817、2sc3356、2sc9018

3AX31、3DG6、3AX81、3DG12、BT33、3DJ6、3DD15、3AX31B、3DA87C、3DD15D、D880、1815 2N2222、2N2907、B772、D882、TIP122、TIP127

8850、9018、2907、222a、1623、1123

2N5551、2N5401

场效应管 ...

......

------------

读图训练实例

------------

七管超外差收音机

低频信号发生器

晶体管扩音机

--------------------

电路参数估算训练实例

--------------------

------------

一些心得体会

------------

经常看到论坛上有人抱怨自己大学四年荒废了,当时没有认真学习模电,现在书到用时方恨少,追悔莫及。对于很多人来说,大学毕业就意味着教育的终结。其实,大学毕业恰恰是终身自我教育的开始。大学只有四年,而从23岁毕业到60岁退休,还有37年的时间,大学只不过占了十分之一的时间。另外,大学毕业前,基本上是为老师,为父母学,现在毕业了,有了独立的意识,知道自己喜欢什么,想干什么,经济也独立了,此时才是真正为自己学,也就是说教育才刚刚开始。大学期间主要收获的是学习方法,经历一个过程,具体知识其实不那么重要。即使你大学期间没有学好模电,现在补也来得急。按照本文档说明,根据自己工作需要,有选择地研究,模电就不难学。

大家学习模电似乎都陷入了一个误区,就是以为要先学会模电才能开始设计,错!

就好象买房子,如果等攒够钱再买,那么需要等很多年以后才买得起,可是等到那时候自己已经七老八十,住不了几天了。如果非要现在买又拿不出全款。这是一个两难困境,靠自己解决不了。如果引入第三方---银行,分期付款,那么可以立即买下房子居住,等到住得差不多了,钱也还完了,人生就完美了。

 

第二篇:学习模电心得 希望对大家有用

学习模电心得 希望对大家有用

模拟电路,现在文老师已经带领我们攻克第二章,但所谓“师傅领进门,修行在个人”,对这一章掌握的如何,具体还在于我们自己的努力。

先总体上来更正一下同学们对模电的认识吧。模电在我们大多数人看来是个很难啃的骨头,各种电子电气元件、伏安特性曲线经常弄的大家头晕脑胀,但其实静下心来仔细把知识琢磨几遍,你可能就会发现其实模电并不是魔电。事实上,模电偏重于PN结内部参量的计算,放大电路结构及相应特点、应用,而且也要求设计满足一定放大功能的电路。我们学习模电的难点在于电路的分析,但只要我们复习一下上学期的电路学习,把戴维宁等定理适当应用到模电电路的分析计算中,肯定会起到事半功倍的效果。因为模电的电路图看似繁琐,但其实中心都在半导体电气元件上,以三极管为例,只要我们沿电流走向分别分析B、C、E端口,最后汇总,那头脑中自然会出现清晰的电路走向而不至于一团乱麻。现在模电学习刚刚进入比较难懂的阶段,大家需要做的是把书中的各个典型电路图分析透彻,而输入、输出特性这种对后面学习有很大帮助的曲线图更要烂熟于心。这样在进行下一步学习时会比较顺利,不至于对模电产生抵触情绪。

说说我们现在这一章的学习,在我看来,第二章基本放大电路根本就是对第一章中三四小节的全面扩展延伸,把我们学习到的晶体管场效应管的理论知识上升到了实际应用的高度,这可能是大家普遍反映难学的原因。对此,我觉得主要还是要靠老师的帮助,上课一定要认真听讲,认真做笔记。一方面听讲可以知道内容的重点,这样下课自己看书的时候就比较有针对性,效率很高,知识点齐全,考试自然轻松;另一方面老师在课上会讲到课本上没有但又十分重要的知识和思路,而这些事自己看书根本不能得到的。模电是一门逻辑性极强的课程,而且有些电路图相当复杂,离开老师的讲解,学习难度不言而喻。举个例子,刚开始的时候,我在分析共极输入时总是不太明白怎么样迅速找出公共极性,周一模电课上文老师总结“Ui连接一个电极,Uo引出一个电极,那么剩下的电极则为公共极,即为共某极电路”,这样一来,头脑中立刻清晰了很多,相信很多同学也有与我相同的感受吧。

分析模电重在按部就班思考,这不是说墨守成规,而是在头脑中形成比较成熟的思路,看到题目可以明白的知道我该做什么,会用到什么公式。毕竟我们现在的模电公式繁多,如果能有比较清晰的思路,不仅节约时间而且正确率也会很高。就以放大电路稳定性来看,比如需要我们求得Q、Au、Ri ,如果我们头脑中一直有“求解静态工作点Q首先给出直流通

路,求解动态指标首先要给出交流通路,且首先要稳定静态工作点”的清晰思路,再配合上不同电路(晶体管的基本放大电路、直接耦合放大电路、阻容耦合放大电路)所要的不同计算公式,那么这道题目必然迎刃而解。

再想说一点就是我们的模电实验:仿真实验只要我们按书上步骤仔细做就不会有太大问题,它的主要目的是给我们一个虚拟接触那些不常见电气元件的机会,让我们对它们有个更明晰的认识;而实物实验虽然相对比较困难,需要很强的动手能力和对电气元件的清晰了解,但只要大家掌握常用测量仪器的安全使用方法,在认真学习器件原理的基础上认真动脑动手,相信模电实验也不会对大家形成太大压力。

以上只是本人的一点学习心得,希望对大家的学习能有一定的帮助。学习本不是一个人的事,需要大家共同探讨研究,希望谁有了好的学习方法不妨拿出来分享,也便于大家共同进步。有志者事竟成,大家都是初次接触模电,相信只要努力都会取得比较理想的成绩,祝大家学有所成。

相关推荐