弹塑性力学总结读书报告

弹塑性力学读书报告

弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论

1.1科学的假设思想

人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。

1.1.1连续性假定

假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。

1.1.2线弹性假定(弹性力学)

假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

1.1.3均匀性假定

假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。

1.1.4各向同性假定(弹性力学)

假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化;

1.1.5小变形假定

假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量

1.2应力状态理论

应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。在微观层面,我们研究的是一点的应力状态。在宏观层面,根据物体所受的面力和体力以及其与坐标轴的关系,将物体的应力状态分为平面应力问题、平面应变问题及空间应力问题。平面应力问题是指物体在一个方向上的尺寸很小,且外荷载沿该方向的厚度均匀分布(如矩形薄板);平面应变问题则是物体在一个方向上的尺寸很大,外荷载沿该方向为常数(如水坝)。空间应力问题则是一般普遍的情形。对应力的分析应用静力学的理论可以得到求解弹塑性力学的平衡微分方程。

1.3应变状态理论

在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化,即发生位移。物体内各质点发生位移后,如果仍保持各质点间初始状态的相对位置,则物体仅发生刚体位移,如果改变了各点间初始状态的相对位置,则物体还产生了形状的变化,包括体积改变和形状改变,物体的这种变化称为物体的变形。在弹塑性力学中,用应变的概念来描述物体变形,在已知物体位移的情况下,通过几何学工具,结合小变形假设条件,可推导出求解弹塑性力学的几何方程。

1.4本构理论:

本构理论探讨的是物体受到外力作用时应力与应变之间的关系,这是研究弹塑性力学非常重要的理论。对物体应力应变关系的研究首先总是通过实验的手段得来,当我们发现物体处于线弹性阶段时,应力与应变的关系可以通过胡克定律来描述,具体而言又可分为各向同性材料、各向异性材料、对称性材料等。

当受力物体某点的应力状态满足屈服条件是,该点已经进入塑性阶段,此时应力与应变不再呈现出线性关系,对于该点弹性本构关系不再适用。在塑性阶段,应变状态不但与应力状态有关,而且还依赖于整个应力历史(应力点移动的过程),由于应力历史的复杂性,很难建立一个能包括各种变形历史影响的全量形式的塑性应力-应变关系,只能建立应力与应变增量之间的塑性本够关系。当结构材料进入塑性状态之后,应力点位于屈服面上,此时材料的应力-应变关系将根据加载与卸载的不同情况而服从不同的规律。若为卸载,则施加的应力增量将使应力点从屈服面上回到屈服面内,增量应力与增量应变之间仍服从胡克定律。若为加载,则所施加的增量应力将使应力点在屈服面上移动或移动到新的屈服面上,此时材料的本构关系服从增量理论。

当个应变分量自始至终都按同一比例增加或减少时,应变强度增量可以积分求得应变强度,从而建立全量理论的应力应变关系

1.5 边界条件(圣维南原理)

边界条件表示在边界上位移与约束,或应力与面力之间的关系式。边界条件分为应力边界条件、位移边界条件、混合边界条件,求解弹性力学问题时,使应力分量、形变分量、位移分量完全满足8个基本方程相对容易,但要使边界条件完全满足,往往很困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供恒大的方便。圣维南原理描述如下:如果物体一小部分边界面上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就会使近处产生显著的应力,而远处的应力可以不计。

2. 材料力学性质模型

(1)弹性材料

弹性材料是对实际固体材料的一种抽象,它构成一个近似于真实材料的理想模型。弹性材料的特征是:物体在变形过程中,对应于一定的温度,应力与应变之间呈 一一对应的关系,它和载荷的持续时间及变形历史无关;卸载后,类变形可以完全恢复。在变形过程中,应力与应变之司呈线性关系,即服从胡克 (Hooke

R)规律的弹性材料称为线性弹性材料;而某些金属和塑料等,其应力与应变之间呈非线性性质,称为非线性弹性材料。材料弹性规律的应用,就成为弹性力学区别于其它固体力学分支学科的本质特征。

(2)塑性材料

塑性材料也是固体材料约一种理想模型。塑性材料的特征是:在变形过程中,应力和应变不再具有一一对应的关系,应变的大小与加载的历史有关,但与时间无关;卸载过程中,应力与应变之间按材料固有的弹性规律变化,完全卸载后,物体保持一定的永久变形、或称残余变形。部分变形的不可恢复性是塑性材料的基本特征。

(3)粘性材料

当材料的力学性质具有时间效应,即材料的力学性质与载荷的持续时间和加载速率相关时,称为粘性材料。实际材料都具有不同程度的粘性性质,只不过有时可以略去不计。

2 求解方法

在弹弹塑性力学里求解问题,主要有三种基本方法,分别是按位移求解、按应力求解和按能量原理求解。

2.1位移法

它以位移分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出位移分量,然后再求出形变分量和应力分量。位移法能适应各种边界条件问题的求解。

2.2应力法

它以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量。按应力法求解平面问题时,需要满足相容方程,它是偏微分方程,由于不能直接求解,则只能采用逆解法或半逆解法。

所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数?,从而求出应力分量。然后根据应力边界条件来考察,在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知所设定的应力函数可以解决什么问题。所谓半逆解法,就是针对所要解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数?,然后来考察这个应

力函数是否满足相容方程以及原来假设的应力分量和由这个应力函数求出其他应力分量,是否满足应力边界条件和位移单值条件。

2.3能量原理

由以上的方法可以解决梁的弯曲、薄板弯曲、厚壁圆筒、孔边应力等问题的求解,然而只有对一些特殊结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,在给定边界条件时,求解极其困难,而且往往是不可能的。为解决这些问题,数值解法的应用就有重要的意义,如有限元法、边界元法等,这些解法的依据都是能量原理。

虚位移原理,在外力作用下处于平衡状态的可变形体,当给予物体微小虚位移时,外力在虚位移上所做的虚功等于物体的虚应变能。

虚功原理,当物体在已知体力和面力作用下处于平衡状态时,微小虚面力在实际位移所做的虚功,等于虚应力在真实应变所产生的虚应变余能。

最小势能原理,即给定外力作用下保持平衡的弹性体,在满足位移边界条件的位移场中,真实的位移场使其总势能能取最小值。

最小余能原理,在所有满足平衡方程和应力边界条件的静力许可的应力场中,真实的应力场使余能取最小值。

3总结

弹塑性力学作为固体力学的一个重要分支,是我们认识物体受力时应力应变规律的重要基础理论,是分析和解决许多工程技术问题的基础和依据。结合本专业,树立土的本构模型概念,在有限元计算中根据实际问题选取合适的本构模型对于问题的求解具有重要意义。

 

第二篇:20xx级--弹塑性力学总结

1.弹塑性力学问题的研究方法弹塑性力学问题的研究方法可分为三种类型: (1)数学方法:就是用数学分析的工具对弹塑性力学边值问题进行求解,从而得出物体的应力场和位移场等。在分析弹塑性力学时,对从物体中截取的单元体,从静力平衡、变形几何关系和应力应变物理关系三个方面来建立弹塑性力学的基本方程,由此建立的是偏微分方程,它适用于各种构件或结构的弹性体。根据基本方程求解各类具体问题。     另一种数学方法是数值方法。在数值方法中,常见的有差分法、有限元法及边界元法等。尤其是塑性力学方程是非线性的,因而人们注重应用近似计算方法。 (2)实验方法:就是利用机电方法、光学方法、声学方法等来测定结构部件在外力作用下应力和应变的分布规律,如光弹性法、云纹法等。 (3)实验与数学相结合的方法:这种方法常用于形状非常复杂的弹塑性结构。例如对结构的特殊部位的应力状态难以确定,可以用光弹性方法测定,作为已知量,置入数值计算中,特别是当边界条件难以确定时,则需两种方法结合起来,以求得可靠的解答。

2. 载荷分类作用于物体的外力可以分为体积力和表面力,两者分别简称为体力和面力。所谓体力是分布在物体体积内的力。例如重力和惯性力,物体内各点所受的体力一般是不同的。所谓面力是分布在物体表面上的力。如风力、流体压力、两固体间的接触力等。物体上各点所受的面力一般也是不同的。

3.  ABAQUS  ANSYS  NASTRAN  ADINA各有什么优缺点

ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。优点:1. 非线性结构方面的分析很强大。它对于多载荷步的计算和规划,以及它的软件设计思想,非常严密而且直观。可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。2. 操作界面友好,不是其他CAE软件可以比拟的。3. 接口python语言,非常的强大,建模,后处理,高级的用户都要用编程。 缺点:abaqus最大的缺点是上手慢,其教程少且差。ABAQUS对爆炸与冲击过程的模拟相对不如DYTRAN和LS-DYNA3D。在中国起步较晚,所以推广不是很好,相关参考书籍较少。但发展势头迅猛。

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。优点:1. 由一整套可扩展的、灵活集成的各模块组成,能满足各行各业的工程需要。它不仅可以进行线性分析,还可以进行各类非线性分析。2.线性分析很强大。流体分析,电磁分析,多物理场耦合分析超级强大。3. 在中国推广较早,使用比较普及。4. 比较成熟的参考资料比较多,分类比较细。缺点:它们核心的计算部分变化不大。非线性分析弱一些;至于热分析则很一般,对于岩土结构的静力学计算也一般。界面不是很友好,前处理有难度。

NASTRAN是大型通用结构有限元分析软件,也是全球CAE工业标准的原代码程序。NASTRAN系统长于线性有限元分析和动力计算。国内应用不是很广,主要集中在航空航天领域。NASTRAN的求解器效率比ANSYS高一些。NASTRAN 结构分析做得很好,与ANSYS差别不大。NASTRAN很正规,用户多。

ADINA是近年来发展最快的有限元软件,它独创有许多特殊解法,如劲度稳定法(Stiffness Stabilization),自动步进法(Automatic Time Stepping),外力-变位同步控制法(Load-Displacement Control)以及BFGS梯度矩阵更新法,使得复杂的非线性问题(如接触,塑性及破坏等),具有快速且几乎绝对收敛的特性,且程式具有稳定的自动参数计算,用户无需头痛于调整各项参数。另外就是它有源代码,我们可以对程序进行改造,满足特殊的需求。

4. 从以下三个模型说明力学的模型与假设:一、材料构造模型:(1)连续性假设:假定固体材料是连续介质,即组成物体的质点之间不存在任何间隙,连续紧密地分布于物体所占的整个空间。由此,我们可以认为一些物理量如应力,应变和位移等可以表示为坐标的连续函数,从而在作数学推导时可方便地运用连续和极限的概念。当微粒尺寸及各微粒之间的距离远比物体的几何尺寸小时,运用这个假设不会引起显著的误差。(2)均匀及各向同性假设:假设物体由同一类型的均匀材料组成,则物体内各点与各方向上的物理性质相同(各向同性);物体各部分具有相同的物理性质,不会随坐标的改变而变化(均匀性)。二、材料力学性质模型(1)弹性材料:弹性材料是对实际固体材料的一种抽象,它构成一个近似于真实材料的理想模型。弹性材料的特征是:物体在变形过程中,对应于一定的温度,应力与应变之间呈 一一对应的关系,它和载荷的持续时间及变形历史无关;卸载后,这类变形可以完全恢复。在变形过程中,应力与应变之司呈线性关系,即服从胡克 (Hooke R)规律的弹性材料称为线性弹性材料;而某些金属和塑料等,其应力与应变之间呈非线性性质,称为非线性弹性材料。材料弹性规律的应用,就成为弹性力学区别于其它固体力学分支学科的本质特征。(2)塑性材料:塑性材料也是固体材料约一种理想模型。塑性材料的特征是:在变形过程中,应力和应变不再具有一一对应的关系,应变的大小与载荷的大小有关,但与时间无关;卸载过程中,应力与应变之间按材料固有的弹性规律变化,完全卸载后,物体保持一定的永久变形或称残余变形。部分变形的不可恢复性是塑性材料的基本特征。(3)粘性材料:当材料的力学性质具有时间效应,即材料的力学性质与载荷的持续时间和加载速率相关时,称为粘性材料。实际材料都具有不同程度的粘性性质,只不过有时可以略去不计。三、结构计算模型1)小变形假设:假定物体在外部因素作用下所产生的位移远小于物体原来的尺寸。应用该假设,可使计算模型大力简化。(2)无初应力假设:假定物体原来是处于一种无应力的自然状态。即在外力作用以前,物体内各点应力均为零。 (3)载荷分类:作用于物体的外力可以分为体积力和表面力,两者分别简称为体力和面力。所谓体力是分布在物体体积内的力。例如重力和惯性力,物体内各点所受的体力一般是不同的。所谓面力是分布在物体表面上的力。如风力、流体压力、两固体间的接触力等。物体上各点所受的面力一般也是不同的。

    材料构造模型、结构计算模型是讨论问题的共同基础;而材料力学性质模型的选取,则需根据材料本身的力学性质、工作环境及限定的研究范围来确定。弹性、塑性和粘性只是材料的三种基本理想性质,在一定条件下可近似地反映材料在一个方面的力学行为。因而,它们是材料力学性质的理想模型。大多数材料的力学性质在一定条件下可采用上述三种模型之一或其组合加以近似描述。

分析题:

1.以研究对象来分析弹性力学与塑性力学的区别与联系。

固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。

    材料力学、弹性力学和塑性力学在研究的基本内容及方法上有某些相同之处。例如,它们都是研究结构(构件)在外部干扰下的力学响应。具体地说,是研究结构的强度、刚度和稳定性问题(有时统称为强度问题)。以及结构的“破坏”准则或失效准则。在方法上都是在一定的边界条件(或再加上初始条件)下求解三类基本方程:平衡(运动)方程、几何方程和本构(物理)方程。同时,都是以实验结果为依据,所得结果由实验来检验等。但是,由于材料力学(严格地说,是一般材料力学教材和课程)研究的对象主要限于细长体,即杆件,从而在三类基本方程之外,还根据实验观察引入了几何性的假设,即平面假设。弹塑性力学一般地不需引入这类假设,从而可以获得更为精确的结果,更重要的是扩大了研究对象的范围,它可包括各种实体结构(如挡土墙、堤等)、深梁、非圆截面杆的扭转、孔边应力集中,以及板壳等材料力学初等理论所不能解决的力学问题。当然,在弹塑性理论中,有时也引入某些几何性的假设,如薄板、薄壳变形中的直法线假设等;又如在处理边界条件中同样要应用圣维南原理等。

2.矩形截面悬臂梁,跨度为,梁上表面作用均匀载荷。写出其边界条件。检查材料力学的应力公式是否满足力的边界条件。

  

                                                                   

                                                                          

图2.9 受均布载荷悬臂梁

解:由材料力学所得的应力分量为   ,   ,                 (a)

在位移边界条件边界上,有       (在边界上)                             (1)

在应力边界条件的边界上,令。根据力的平衡条件有

                                                                               (2)

如当边界平行于轴时,有。这时,式(2)则为  (在边界上)    (a)

而当边界平行轴时,有。这时,式(2)则为  (在边界上)     (b)

1)梁的上表面处      

    代入力的边界条件(2),则解得

   由上式可知,因为材料力学作了纵向纤维无挤压的假设,无法算出的分布规律。因此,材料力学的应力计算公式(a)结果并不满足上表面的边界条件。

2)梁的下表面处    ,  

    代入式(2)后解得  , 

    由上式可见,材料力学的应力计算公式(a)的结果满足该边界的力边界条件,其中是由材料力学的假设得出的。

3) 的自由端处        ,   

    代入式(2)后解得  , 

因此,在该边材料力学的应力计算公式(a)的结果也满足该边界的力边界条件。

4) 的固定端处  因为固定端的外力分布没有具体给定,我们只能求出该端面上的合力和合力矩的大小。且固定端限制了梁的移动和转动,所以该截面的位移边界条件是很重要的。位移边界条件可表示为  或 (在处)

3.使用ANSYS Workbench对该矩形悬臂梁进行有限元分析:

(1)启动Workbench并建立分析项目。(2)导入创建几何体。(3)添加材料库。进行材料参数设置。(4)添加模型材料属性。给模型添加材料。(5)划分网格。修改网格参数,进行网格划分。(6)施加载荷与约束。选择需要施加固定约束的面,施加固定约束。选择需要施加压力的面,设置面载荷。然后求解。(7)结果后处理。设置求解项应力、应变和总变形,进行求解,得到相应的应力分析云图、应变分析云图、总变形分析云图。(8)保存与退出。

摘要:本文应用ANSYS软件对某飞机机翼进行了简化处理,介绍了如何利用ANSYS软件建立飞机机翼的有限元模型。应用ANSYS软件对机翼进行特定约束条件下的振动模态分析,得到了机翼的各阶固有频率及相应的变形云图。对机翼的变形云图进行分析,可以看出随着振动频率的逐渐增大,飞机机翼先发生弯曲变形,然后弯曲变形逐渐增大,接着发生扭转变形,然后扭转变形加大,最后飞机机翼产生复杂的严重变形,即有多种变形。对次结果进行分析,很好的解决了飞机机翼的各阶固有频率及振型的问题,为机翼在高空飞行时的设计和改进提供了依据。    这种方法还可用于解决悬臂梁的受力变形等问题。各种实体结构(如挡土墙、堤等)、深梁、非圆截面杆的扭转、孔边应力集中,以及板壳等.

相关推荐