高一数学试卷分析(1)

来源:m.fanwen118.com时间:2021.9.17

2011—2012学年第一学期高一数学试卷分析

一、试卷分析

在试题内容的编排上,较有层次性、灵活性。试题难度适中,选题较恰当,内容全面,着重考察了空间几何体、点线面位置关系、直线方程、圆的相关性质等基础知识与一些基本技巧,同时也考查了分类讨论、数形结合等重要的数学思想。

从整体来看,着重考查基础知识、基本方法的同时,注意对学生进行能力考查,且对重点知识和重要方法进行重点考查,也重视应用题的的考查,向高考的命题方向靠拢,有一定的综合性,是一份较好的高一期末考试试卷。

选择题部分平均分大约在24分,题目相对简单,错误集中在第4,10题。其中第4题是对“空间四边形”的认识,属于概念题,学生对这一基础概念把握不够导致错误;第10题借助长方体考查空间几何中的一些基本性质,A、B选项较易排除,C选项可利用三棱锥的体积公式计算出结论,而其中的转化恰好是学生的一个难点,导致学生错选C选项。

填空题均分约为15分,错误题目主要集中在第11、18题。第11题将异面直线的概念和四棱台的定义结合起来考查,究其错误之根本:学生只根据图形直观判断异面直线的条数,并没有深入兼顾“四棱台”的定义;第18题重在考察学生的类比推理能力,但大部分学生在该方面有欠缺,只会“照葫芦画瓢”直接对已知条件进行模仿。

解答题第19题考查两直线平行的基本条件,是一个常规题,相对简单,学生在该题中得分较高;相对存在的问题是计算中较粗心,或者是忘记两直线平行的充要条件。

第20题以正方体为载体考查线面平行的证明,80%的学生能够得满分。该题的思路相对简单,只需把握证明线面平行的两个途径:利用面面平行的定义或者线面平行的判定定理即可。出错学生在证明线线平行的过程中不能很好的利用正方体这一载体,而是利用角度相等、三角形全等等平面几何中的方法来证明直线的平行。

第21题学生失分较多,均分在5分左右。本题旨在考查学生对直线方程的灵活应用,同时结合了圆的几何性质。学生的问题主要存在于以下几个方面:(1)已知直线过一点设直线方程时无从下手;(2)对于圆的一个重要性质(圆心距、弦长的一半、半径构成直角三角形)不会熟练应用;(3)即使设出直线方程,却忽略了对直线斜率不存在进行分类讨论,这也是大多数学生不能得满分的原因。

第22题学生得分情况较好,均分在8分左右。本题为立体几何考查题,同时涉及了空间几何体的体积求解。第一个问题中可通过假设得出结论再证明结论的正确性,亦可从结论推出棱BC所满足的条件;第二个问题须熟练应用长方体、四棱锥的体积公式。

第23题是以实际生活中的装修问题为背景,考查学生建立直角坐标系的能力,同时会应用坐标法解决实际问题。学生得分不尽人意,存在以下问题:(1) 部分学生存在畏难情绪,感觉最后一道题难度大,数字复杂,没有努力思考就放弃;(2)一些学生在建立合理的坐标系时仍存在问题,同时数据相对复杂也是本题的一个难点;(3)学生在理解实际题意时也存在问题,忽略了题目中“冰箱直立通过过道”这一条件。

二、今后应注意方向及采取措施:

(1)对学生来说

1、围绕双基,继续加强基础知识和基本技能训练,提高学生的解题技巧和运算能力,;

2、根据学生层次进行有侧重的训练,如对优等生加强解综合题的分析问题的思路、想法训练,侧重对思路的归纳。对数学学困生侧重基础知识的训练。

3、加强心理疏导,针对不同学生的心理问题提出合理化改进措施,多沟通、勤鼓励安慰,树立学习信心。

4、加强学习方法的指导。

(2)对老师来说:

1、加强教材的研究,把握教材的编写目的和课改的方向,注重对学生能力的提高,例如在学习空间知识时许多问题可以由平面几何的一些基本的结论类比推理得到,可引导学生自己动手推理。

2、注意课堂教学的组织,改变“老师只管给,不管学生是否消化”的课堂

教学现象,提高课堂教学效率。

3、注意鼓动学生学习数学的热情,培养学生主动地消化,去猎取知识的能力。否则,就算你老师讲的天花乱坠,成绩也难以提得上来。

4、关注差生,设法减少两极分化现象。

5、 重视应用题的教学。引导学生把所学的知识用到相关学科和生活、生产实际中去,在解决实际问题的过程中,提高分析问题、解决问题的能力。全面提高学生的素质。

20xx年1月7日


第二篇:安阳三十八中高一数学必修1试卷分析 1700字

高一数学必修1试卷分析

试卷特点及评析:

本试卷考查的知识内容为《必修1》,试题主要有以下几方面的特点:注重基本知识、基本能力、基本方法,难度设计合理,起点低,覆盖面广,主题内容突出,无偏题怪题;注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基有凸显能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考、探究与发现、信息技术应用等提炼结论能力的考查。试题分数150分,考试时间120分钟,题型分选择题(12个)填空题(4个)解答题(6个)试题难度0.75。

注重学生基本知识与基本方法的考查,以基本运算为主,难度适中,层次梯度性好,立足于教材,大多数题是基础题。题型从课本与平时的基础训练中能找到“影子’,学生比较熟悉,试题容易的有:1、2、3、4、6、7、8、10、12、13、14、15、17、18、19. 只要掌握基本知识点就不难得出答案;略微难点的试题是9、11、16、22。

注重数学思想方法的简单应用,主要考查的数学思想方法有:⑴数形结合的思想(如9、

15);⑵分类讨论的思想(如11、14);⑶转化与化归的思想 (如4、7、16) ;⑷函数与方程的思想;通过数学知识的考查,反映考生对于数学思想方法的掌握程度,体现了数学课程改革的新理念与新成果。

从以上特点看,本试题严格按照数学课程标准的规定,立足于教材,重视学生的基本知识、基本能力、基本方法的考查。覆盖面广,难度设计合理,起点低,难易有层次,注重数学思想方法的简单应用,对学生的数学思维能力与实际应用能力进行了考查,注重基础,突出能力,体现新课程理念。

答卷中反映出学生的问题:

基础知识掌握不扎实,很多知识与类似题型课堂上讲过多遍仍然出错。主要原因:⑴课堂上没有认真听讲,对于重点知识不重视;⑵学生整体层次不高,一部分学生基础比较差。如18题(2)考查对数运算很多学生不过关。

运算能力不过关。原因:平时定时训练较少,自主训练意识缺乏;平时练习习惯上看答案,不自主练习,看得懂知道方法,但真正让自己做却难以运算准确。比如第11、16题,

分析问题不透彻,思路不清,解题步骤不明确不严密。比如19、20题解题的方法与格式是我们今后教学需注重的环节。

数学应用意识不强,知识的迁移能力有待提高。比如21题的函数的实际应用,错解率偏高,说明学生把知识迁移到不同情境的能力不强,又如22题函数的综合应用,反映出学生对于知识点的融合不够自然,综合应用能力有待提高。

不注重数学思想方法的应用,利用数学思想方法处理问题的能力欠缺。如数形结合的思想,5题

答题情况暴露出教学问题:

基础知识、技能、方法的三基教学并不到位。后进生的转化工作没有得到很好的落实;对学生的作业批改、学习情况的检查等工作落实不到位,对学生平时成绩的跟踪没有量化分析找出问题;课堂教学中重视解题分析指导,轻数学思想方法的培养;课堂训练中重视结论,轻过程和细节,忽视学生运算能力的培养;课堂教学中对于知识整合与实际应用较少,使学生的数学应用意识不强,综合能力欠缺。

今后的教学启示:

要重视基础:数学教学必须面向全体学生,立足基础,教学过程中要落实基本概念知识、基本技能和基本数学思想方法的要求,特别要关心数学学习困难的学生,通过学习兴趣培养和学习方法指导,使他们达到学习的基本要求,努力提高合格率。

培养学生的数学表述能力,提高学生的计算能力:学生在答题中,由于书写表达的不规范或是表述能力的欠缺,也是造成失分的原因。表述是一种重要的数学交流能力,因此,教学中要重视训练,培养学生良好的数学表述能力。

要加强培养学生数学应用的意识,在教学中,要经常引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养应用意识与建模能力。

倡导主动学习,营造自主探索和合作交流的环境。为学生营造自主探索和合作交流的空间,善于从教材实际和社会生活中提出问题,开设研究性课程,让学生自主学习、讨论、交流,在解决问题的过程中,激发兴趣,树立信心,培养钻研精神,同时提高数学表达能力和数学交流能力。

2013-1-21

更多类似范文
┣ 高二数学期中考试试卷分析报告 1200字
┣ 《经济数学基础》试卷分析报告 2400字
┣ 郴州市20xx年下期期末教学质量监测试卷分析评价报告评比 0字
┣ 20xx-20xx三年级数学试卷分析 700字
┣ 更多试卷分析范文数学
┗ 搜索类似范文