新课标 人教版 必修一物理知识点归纳

必修一  知识点归纳

第一章、运动学基本概念

1.机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

2.运动的特性:普遍性,永恒性,多样性

3.参考系1)定义:为了研究一个物体运动而假定不动的另一个物体叫参考系。

2)原则:参考系的选取是自由的。但必须以能使问题简化方便解决为原则。

(2)比较两个物体的运动必须选用同一参考系。

(3)参照物不一定静止,但被认为是静止的。

4.质点

(1)在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

(2).质点条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)<<它通过的距离

(3)质点具有相对性,而不具有绝对性。

(4).理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

5.时间与时刻

(1).钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段

△t=t2—t1

(2).时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

(3).通常以问题中的初始时刻为零点。

6.路程和位移

(1).路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

(2).从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

(3).物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

(4).只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

7.打点记时器:通过在纸带上打出一系列的点来记录物体运动时间信息的仪器。

(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s

8.速度:物体通过的    与所用的时间之比叫做速度。

9.平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移x与发生这段位移所用时间t的比值。

其方向与物体的位移方向相同。单位是m/s。 v=x/t ,矢量。

平均速率=总路程÷总时间,标量,

10.瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。矢量。

瞬时速率(简称速率)即瞬时速度的大小。 标量。

11.速度变化的快慢——加速度

(1).物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值

a=(vt—v0)/t

(2).a不由△v、t决定,而是由F、m决定。

(3).变化量=末态量值—初态量值……表示变化的大小或多少

(4).变化率=变化量/时间……表示变化快慢

(5).如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。

(6).速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。

第二章  探究匀变速直线运动规律

第一、二节匀变速直线运动

匀变速直线运动规律

.基本公式:速度时间公式:v=v0 + at;位移平均速度公式:x=t =(v0+v)/2.t

位移时间公式:x=v0t + a t2/2;位移速度公式2a x= v2v02

匀变速直线运动的特点a是恒量,而且av0同一直线上。

.推论:1、任意两个连续相等的时间里的位移之差是一个恒量,即ΔS=aT2=恒量;

      注意:(1)此式是匀变速直线运动的判别式

(2)推广公式:连续的第m个T内的位移和连续第n个T内的位移差为:Sm-Sn=(m-n) aT2

2、某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即=vt/2=(v0+vt)/2;

3、某段位移中点的瞬时速度vS/2等于初速度v0和末速度v平方和一半的平方根,即vx/2=

注意:可以证明,无论匀加速还是匀减速,都有

4、初速度为零的匀加速直线运动还具有以下几个特点:

做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为: 

     ,   ,   , 

以上各式都是单项式,因此可以方便地找到各物理量间的比例关系

(1)、1 T内、2T内、3T内……位移之比为S1S2S3∶…=12∶22∶32∶…n2

(2)、1T末、2T末、3T末……速度之比为v1v2v3∶…=1∶2∶3∶…n;

(3)、第一个1T内、第二个T内、第三个T内……位移之比为S1S2S3∶…=1∶3∶5∶…(2n-1);

(4)、连续通过前1个S,前2个S,前3个S……的位移所用时间之比为1∶∶…

(5)、从静止开始通过连续相等的位移所用的时间之比为

t1t2t3∶…=1∶(-1)∶()∶…();

第三节  自由落体运动/自由落体运动规律

一、自由落体运动

1.物体仅在重力的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。

在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。

2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广

二、自由落体运动规律

1.自由落体运动是一种初速度为_________的匀变速直线运动,加速度为_________,称为重力加速度(g)。g=9.8m/s

2.重力加速度g的方向总是_________的。其大小随着_________的增加而增加,随着_________的增加而减少。

3.基本公式:__________________,__________________,__________________,__________________

4.画出x-t图象,v-t图象

三、竖直上抛运动

1.处理方法:分段法(上升过程a=-g,下降过程为自由落体),

整体法(a=-g,注意矢量性)

1.规律公式:__________________ ,__________________, __________________

2.对称性:

时间对称性:上升到最高点时间_________,上升到最高点所用时间与回落到抛出点所用时间_________

速度对称性:两次在同一高度处_________相等,方向_________

3.上升的最大高度:__________________

4.在最高点:加速度_________,速度_________

5.画出x-t图象,v-t图象

第四节图象描述直线运动

1.匀变速直线运动的x-t图象

①平行于t轴的直线

②倾斜直线

③直线交点

④与坐标轴截距

2.匀变速直线运动的v-t图象

①平行于t轴的直线

②倾斜直线

③直线交点

④与坐标轴截距

⑤图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和

第五节汽车行驶安全和追及相遇问题

1.停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)

2.安全距离≥停车距离

3.刹车距离的大小取决于车的初速度和路面的粗糙程度

4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间关系和位移关系,临界状态(匀减速至静止)。可用图象法解题。

第三章  相互作用

第一节重力

1.力   定义:力是物体之间的相互作用。

1力具有物质性:力不能离开物体而存在。 

说明:①对某一物体而言,可能有一个或多个施力物体。 ②并非先有施力物体,后有受力物体 

2)力具有相互性:

一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。 

说明:①相互作用的物体可以直接接触,也可以不接触。  ②力的大小用测力计测量。 

3)力具有矢量性:力不仅有大小,也有方向。 

4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。 

5)力的种类: 

①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。 

②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。 

说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。 

2.重力 

定义:由于受到地球的吸引而使物体受到的力叫重力。 

说明:①地球附近的物体都受到重力作用。 

②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。 

③重力的施力物体是地球。 

④在两极时重力等于物体所受的万有引力,在其它位置时不相等。 

1)重力的大小:G=mg 

说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。 

②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。 

③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。 

(2)重力的方向:竖直向下(即垂直于水平面) 

说明:①在两极与在赤道上的物体,所受重力的方向指向地心。 

②重力的方向不受其它作用力的影响,与运动状态也没有关系。 

(3)重心:物体所受重力的等效作用点。 

重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。 

②质量分布不均匀的物体的重心与物体的形状、质量分布有关。 

③薄板形物体的重心,可用悬挂法确定。 

说明:①物体的重心可在物体上,也可在物体外。 

②重心的位置与物体所处的位置及放置状态和运动状态无关。 

③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。 

第二节  弹力

1.1形变:物体的形状或体积的改变,叫做形变。 

说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。 

②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变.

如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

③分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。 

说明:①弹力产生的条件:接触;弹性形变。 

②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。 

③弹力必须产生在同时形变的两物体间。 

④弹力与弹性形变同时产生同时消失。 

3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。 

2.几种典型的产生弹力的理想模型: 

① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。 

② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。 

③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。 

4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。 

按效果分:弹性形变、塑性形变

3.弹力有无的判断:1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

弹性与弹性限度

1.物体具有恢复原状的性质称为弹性。

2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。

3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

探究弹力

2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

第三节  摩擦力

1.滑动摩擦力

1).两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

2).在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

3).滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

4)μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关,0<μ<1。

5).滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

6).条件:直接接触、相互挤压(弹力),相对运动/趋势。

7).摩擦力的大小与接触面积无关,与相对运动速度无关。

8).摩擦力可以是阻力,也可以是动力。

9).计算:公式法/二力平衡法。

2.静摩擦力

1).当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2).物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。

3).静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4).静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

5).最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm0?N(μ≤μ0

6).静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

3.按步骤分析物体受力 

为了防止出现多力或漏力现象,分析物体受力情况通常按如下步骤进行: 

(1)先分析物体受重力。 

(2)其研究对象与周围物体有接触,则分析弹力或摩擦力,依次对每个接触面(点)分析,若有挤压则有弹力,若还有相对运动或相对运动趋势,则有摩擦力。 

(3)其它外力,如是否有牵引力、电场力、磁场力等。 

第四节力的合成与分解

1.力的等效和替代

力的图示

1).力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。

2).图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。

3).力的示意图:突出方向,不定量。

2.力的等效/替代

1).如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。

2).根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。

3).实验:平行四边形定则:P58

3.力的合成与分解

力的平行四边形定则

1).力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。

2).一切矢量的运算都遵循平行四边形定则。

4.合力的计算

1).方法:公式法,图解法(平行四边形/多边形/△)

2).三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。

3).设F为F1、F2的合力,θ为F1、F2的夹角,则:

F=√F1²+F2²+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)

当两分力垂直时,F=F1²+F2²,当两分力大小相等时,F=2F1cos(θ/2)

5.两个分力一定时,合力的大小范围讨论

.1)|F1—F2|≤F≤|F1+F2|

2)随F1、F2夹角的增大,合力F逐渐减小。

3)当两个分力同向时θ=0,合力最大:F=F1+F2

4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|

5)当两个分力垂直时θ=90°,F²=F1²+F2²

分力的计算

1.分解原则:力的实际效果/解题方便(正交分解)

2.受力分析顺序:G→N→F→电磁力

第五节共点力的平衡条件

1.共点力

如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。

2.寻找共点力的平衡条件

1).物体保持静止或者保持匀速直线运动的状态叫平衡状态。

2).物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。

3).二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。

4).正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量

第六节力的分解 

力的分解  求一个已知力的分力叫做力的分解。 

(1) 力的分解是力的合成的逆运算,同样遵循平行四边形定则。 

(2) 已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解。 

要得到唯一确定的解应附加一些条件: 

①已知合力和两分力的方向,可求得两分力的大小。 

②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。 

③已知合力、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小: 

若F1=Fsinθ或F1≥F有一组解 

若F>F1>Fsinθ有两组解 

若F<Fsinθ无解 

(3) 在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。 

(4) 力分解的解题思路 

力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题。因此其解题思路可表示为:

必须注意:把一个力分解成两个力,仅是一种等效替代关系,不能认为在这两个分力方向上有两个施力物体。

在处理力的合成和分解的复杂问题上的一种简便的方法:正交分解法。 

正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。 

力的正交分解法步骤如下: 

(1)正确选定直角坐标系。通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。 

(2)分别将各个力投影到坐标轴上。分别求x轴和y轴上各力的投影合力Fx和Fy,其中: 

Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+…… 

注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。第2章的...高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量 

第四章  牛顿运动定律

第一节伽利略理想实验与牛顿第一定律

伽利略的理想实验(见P76、77,以及单摆实验)

牛顿第一定律

1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。

2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。

4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。

第二、节影响加速度的因素/探究物体运动与受力的关系

加速度与物体所受合力、物体质量的关系(实验设计见B书P93)

第三节  牛顿第二定律

牛顿第二定律

1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

2.a=k?F/m(k=1)→F=ma

3.k的数值等于使单位质量的物体产生单位加速度时力的大小。国际单位制中k=1。

4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。

5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。

6.牛顿第二定律特性:

1)矢量性:加速度与合外力任意时刻方向相同

2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。

3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。

4)独立性:力的独立作用原理:不同方向的合力产生不同方向的加速度,彼此不受对方影响。

5)同体性:研究对象的统一性。

第四节  牛顿第三定律

探究作用力与反作用力的关系

1.一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。

2.力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的)

3.平衡力与相互作用力:

同:等大,反向,共线

异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。

牛顿第三定律

1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。

2.牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。

第五节  牛顿第二定律的应用

解题思路:物体的受力情况?牛顿第二定律?a?运动学公式?物体的运动情况

超重与失重

1.定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重>物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重<视重)。

2.只要竖直方向的a0物体一定处于超重或失重状态。

  超重的条件:

失重的条件:

3.视重:物体对支持物的压力或对悬挂物的拉力(仪器称值)。

4.实重:实际重力(来源于万有引力)。

5.N=G+ma(设竖直向上为正方向,与v无关)

6.完全失重:一个物体对支持物的压力(或对悬挂物的拉力)为零,达到失重现象的极限的现象,此时a=g=9.8m/s²。

7.自然界中落体加速度不大于g,人工加速使落体加速度大于g,则落体对上方物体(如果有)产生压力,或对下方牵绳产生拉力。

第六节力学单位   单位制的意义

1.单位制是由基本单位和导出单位组成的一系列完整的单位体制。

2.基本单位可任意选定,导出单位则由定义方程式与比例系数确定的。基本单位选取的不同,组成的单位制也不同。

国际单位制中的力学单位

1.国际单位制(符号~单位):时间(t)~s,长度(l)~m,质量(m)~kg,电流(I)~A,物质的量(n)~mol,热力学温度~K,发光强度~cd(坎培拉)

2.1N:使1kg的物体产生单位加速度时力的大小,即1N=1kg?m/s²。

3.常见单位换算:1英尺=12英寸=0.3048m,1英寸=2.540cm,1英里=1.6093km。

相关推荐