51单片机实训报告

51单片机”精简开发板的组装及调试实训报告

为期一周的单片机实习已经结束了。通过此次实训,让我们掌握了单片机基本原理的基础、单片机的编程知识以及初步掌握单片机应用系统开发实用技术,了解“51”单片机精简开发板的焊接方法。同时培养我们理论与实践相结合的能力,提高分析问题和解决问题的能力,增强学生独立工作能力;培养了我们团结合作、共同探讨、共同前进的精神与严谨的科学作风。

此次实训主要有以下几个方面:

一、实训目的

1.了解“51”精简开发板的工作原理及其结构。

2.了解复杂电子产品生产制造的全过程。

3.熟练掌握电子元器件的焊接方法及技巧,训练动手能力,培养工程实践概念。

4.能运用51单片机进行简单的单片机应用系统的硬件设计。

5.掌握单片机应用系统的硬件、软件调试方法

二、实验原理

流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

它的电气性能指标:输入电压:DC4.5~6V,典型值为5V。可用干电池组供电,也可用直流稳压电源供电。

如图所示:

本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

三、硬件组成

1、晶振电路部分

单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振的瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。

2、复位端、复位电路

给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,时如果手按着一直不放,系统将一直复位,不能正常。当要对晶体重置时,只要对此引脚电平提升至高电平并保持两个及其周期以上的时间便能完成系统重置的各项动作,使得内部特殊功能寄存器内容均被设成已知状态。

如图所示,只要按此开关就能完成LED和开关的重置。

3、发光二极管电路

LED发光二极管依次接P1口,利用共阳极接线,只要P1口由高电

平变为低电平LED灯即点亮。

四、安装、焊接及调试

⑴安装步骤

1.检查元器件的数量、质量和规格,详细阅读硬件说明部分,并将元件对号入座,对于有极性的元器件要注意安装方向,确保一次性焊接成功。

2.先焊接低矮、耐热的元件,比如电阻,再对高一些的元件进行焊接,比如芯片座、排阻等,以此类推,最后焊接高大的元件。

⑵焊接部分

1.检查印刷电路裸板电源正负端、各相邻焊点是否短路。

2.检测元器件质量,电容、接插件是否短路,按键通断状态是否正确。

3.集成电路一定焊接插座,确定好插座空间安装位置。

4.焊接时特别要注意锡不能太多,否则易发生焊点短路。

5.电烙铁焊接时间不要过长,以免烫坏焊点。

⑶调试部分

1.硬件调试

拿到电路板后,首先要检查加工质量,并确保没有任何方面的错误,如短路和断路,尤其要避免电源短路;元器件在安装前要逐一检查,用万用表测其数值,看是否与所用相同;完成焊接后,应先空载上电(芯片座上不插芯片),并检查各引脚的电位是否正确。若一切正常,方可在断电的情况下将芯片插入,再次检查各引脚的电位及其逻辑关系。将万用表的探针放到单片机接电源的引脚上检测一下,看是否符合要求。

进行串口测试。接上单片机电源和串口线,打开电源开关,电源指示灯D0亮,使用STC89C系列单片机,其本身自带了一个测试程序,上电之后D1~D8便会两个两个的灯亮的闪烁。或者自己下载一个程序,如果串口正常,如不成功,就应该好好检查焊点及串口线。

2.流水灯程序调试

将电路板串口连接电脑,把程序烧入STC89C52系统。用USB接口连接电脑,为单片机提供电源。电源接入口,程序开始运行。LED灯开始轮流闪烁,闪烁间隔大概为0.5S。点击复位电路,单片机复位,LED灯从第一盏灯开始又循环亮起。

3.C语言程序

 #include<reg52.h>

 #include<intrins.h>

void delay(unsigned int d)

{while(--d>0); }

void main() {

unsigned char i,LED;

while(1) {LED=0x7f;

for(i=7;i>=0;i--) {P1=LED;

 delay(50000);

LED=_cror_(LED,1); }}}

在电路调试过程中也许会碰到以下一些故障:

1.接好电池盒,电源这是灯不亮。这些是因为电源插座存在虚焊现象,接触不良。遇到这种情况的时候应该及时检查和修复虚焊点。

2.出现不能正常下载程序。这是因为电路板电源没有正常接通或者下载线焊接组装有误、电池电压低、芯片MAX232不正常工作或管脚虚焊。应该去检查电源是否正常接通,并且更正正确。

3.下载程序不能正常完成流水灯功能。这是因为电池电压低或者发光二极管损坏或者管脚虚焊、电阻R1开路或管脚虚焊。解决这样的方法是更换电池或者修复焊点。

五、结论

通过这次实习让我们可以在实践中检验我们所学的单片机知识,更好的融会贯通,并在实践中发现问题,解决问题。这次设计的流水灯由于比较简单,遇到的问题都不是很困难,我们通过互相之间的交流、查阅书籍以及通过互联网所搜所需的资料都能够比较好的解决。

这次所调试的流水灯系统缺点是程序输入采用串口输入,烧入程序比较复杂。电路比较简单,所实现的功能只有流水灯,时间闪烁的控制需要修改程序才能实现。如果需要改进的,可以增加一个时间设置来设这流水灯的闪烁时间,或者通过流水灯排列的形状不同可以做成花样流水灯。

下图为本次实训结果展示图:

 

电路板焊接图

 

电路板实现流水灯图

这次的实践动手操作,主要在细心。在焊板子之前老师给我们详细的讲述了关于我们将要实训的内容。深刻的讲解了关于单片机的一些基础的知识。也给我们讲了关于焊接时应该注意的一些细节。还有实训时应该注意的一些事情以及我们最后的验收过程。对于这些我们每个人都认真的学习虚心听讲。先焊接矮的元件,否则高元件会挡住,使矮元件不好焊接。也要注意摆放芯片座的顺序,否则会导致焊接反。而且,通过这次的训练,我也认识了更多的元件,接触到了具有实际意义的产品。当自己的焊接结果成功时,那种愉悦是难以言表的。手上拿着自己焊过的电路板,看着它闪烁的灯,突然觉得心里好安慰。这几天做得这些努力都是值得的。我们以前看着别人做这些东西各种高端,现在自己也可以动手做一个属于自己的板子。这不仅是对自己能力上的肯定也是对自己这几天来的一个交代吧。希望今后会有更多的实践动手实验,我一定会珍惜每一次的实训机会,不断地锻炼自己的实践提高动手能力,让自己更好的适应这个快速发展的社会。

 

第二篇:51单片机生产实习报告(DS1302)

一、实习目的与要求

   学习51系列单片机的基本原理,并能熟练运用其基本功能。

   用单片机和DS1302时钟芯片做一个实时时钟,用数码管显示年、月、日、星期、时、分、秒,利用独立键盘对其进行时间和日历调整。

二、51系列单片机的管脚介绍

VCC:供电电压。

  GND:接地。

  P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

  P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

  P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

  P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

  P3口也可作为AT89C51的一些特殊功能口,如下表所示:

  口管脚 备选功能

  P3.0 RXD(串行输入口)

  P3.1 TXD(串行输出口)

  P3.2 /INT0(外部中断0)

  P3.3 /INT1(外部中断1)

  P3.4 T0(记时器0外部输入)

  P3.5 T1(记时器1外部输入)

  P3.6 /WR(外部数据存储器写选通)

  P3.7 /RD(外部数据存储器读选通)

  P3口同时为闪烁编程和编程校验接收一些控制信号。

  RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

  ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

  /PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

  /EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

  XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

  XTAL2:来自反向振荡器的输出。

三、DS1302的结构及工作原理

1、DS1302的介绍

现在流行的串行时钟电路很多,如DS1302、 DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。本文介绍的实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768kHz晶振。

DS1302 是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。

2、DS1302的引脚功能及结构

   DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),后面有详细说明。SCLK始终是输入端。 图(1)为DS1302的封装图,图(2)为引脚说明图。

图(1)     

图(2)

四、DS1302的操作

(1)DS1302的控制字节

  DS1302 的控制字节如图2所示。控制字节的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果为0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出。

  (2)数据输入输出(I/O)

  在控制指令字输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。

  (3)DS1302的寄存器

  DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式,其日历、时间寄存器及其控制字见表1。

    此外,DS1302 还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器内容。 DS1302与RAM相关的寄存器分为两类:一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;另一类为突发方式下的RAM寄存器,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。

五、DS1302与CPU的连接

实际上,在调试程序时可以不加电容器,只加一个32.768kHz 的晶振即可。只是选择晶振时,不同的晶振,误差也较大。另外,还可以在上面的电路中加入DS18B20,同时显示实时温度。只要占用CPU一个口线即可。 LCD还可以换成LED,还可以使用北京卫信杰科技发展有限公司生产的10位多功能8段液晶显示模块LCM101,内含看门狗(WDT)/时钟发生器及两种频率的蜂鸣器驱动电路,并有内置显示RAM,可显示任意字段笔划,具有3-4线串行接口,可与任何单片机、IC接口。功耗低,显示状态时电流为2μA (典型值),省电模式时小于1μA,工作电压为2.4V~3.3V,显示清晰。

    DS1302 与微处理器进行数据交换时,首先由微处理器向电路发送命令字节,命令字节最高位MSB(D7)必须为逻辑1,如果D7=0,则禁止写DS1302,即写保护;D6=0,指定时钟数据,D6=1,指定RAM数据;D5~D1指定输入或输出的特定寄存器;最低位LSB(D0)为逻辑0,指定写操作(输入), D0=1,指定读操作(输出)。

    在DS1302的时钟日历或RAM进行数据传送时,DS1302必须首先发送命令字节。若进行单字节传送,8位命令字节传送结束之后,在下2个SCLK周期的上升沿输入数据字节,或在下8个SCLK周期的下降沿输出数据字节。

    DS1302与RAM相关的寄存器分为两类:一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;再一类为突发方式下的RAM寄存器,在此方式下可一次性读、写所有的RAM的31个字节。

要特别说明的是备用电源B1,可以用电池或者超级电容器(0.1F以上)。虽然DS1302在主电源掉电后的耗电很小,但是,如果要长时间保证时钟正常,最好选用小型充电电池。可以用老式电脑主板上的3.6V充电电池。如果断电时间较短(几小时或几天)时,就可以用漏电较小的普通电解电容器代替。

六、电路原理图

                         89C52管脚图

                           8位数码管的管脚

                             独立键盘


       数码管段选限流电阻

        单片机复位电路

           单片机晶振电路

           DS1302管脚及电路


七、总结及体会

DS1302 存在时钟精度不高,易受环境影响,出现时钟混乱等缺点。DS1302可以用于数据记录,特别是对某些具有特殊意义的数据点的记录,能实现数据与出现该数据的时间同时记录。这种记录对长时间的连续测控系统结果的分析及对异常数据出现的原因的查找具有重要意义。传统的数据记录方式是隔时采样或定时采样,没有具体的时间记录,因此,只能记录数据而无法准确记录其出现的时间;若采用单片机计时,一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样耗费单片机的资源,而且,某些测控系统可能不允许。但是,如果在系统中采用时钟芯片DS1302,则能很好地解决这个问题。

    这次实习让我受益匪浅,无论从知识上还是其他的各个方面。上课的时候的学习从来没有见过真正的单片机,只是从理论的角度去理解枯燥乏味。但在实习中见过甚至使用了单片机及其系统,能够理论联系实际的学习,开阔了眼界,提高了单片机知识的理解和水平。在这次课程设计中又让我体会到了合作与团结的力量,当遇到不会或是设计不出来的地方,我们就会在QQ群里讨论或者是同学之间相互帮助。团结就是力量,无论在现在的学习中还是在以后的工作中,团结都是至关重要的,有了团结会有更多的理念、更多的思维、更多的情感。

    单片机是很重要的一门课程,老师和一些工作的朋友都曾说过,如果学好一门单片机,就凭这个技术这门手艺找一个好工作也不成问题。尽管我们在课堂学到的内容很有限,但在以后的学习中单片机还需要好好的深入研究和学习,学好了单片机也就多了一项生存的本钱。最后感谢老师对我们的精心指导和帮助,感谢同学们对我的帮助。

相关推荐