解析几何知识点总结

抛物线的标准方程、图象及几何性质:p?0

解析几何知识点总结

关于抛物线知识点的补充:

1、定义:

2、几个概念:

① p的几何意义:焦参数p是焦点到准线的距离,故p为正数;

② 焦点的非零坐标是一次项系数的14

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p

3、如:AB是过抛物线y2?2px(p?0)焦点F的弦,M是AB的中点,l是抛物线的准线,MN?l,

为垂足,求证:

(1)HF?DF; (2)AN?BN; (3)FN?AB; (4)设MN交抛物线于Q,则Q平分MN; (5)设A(x1,y1),B(x2,y2),则y1y2??p2,x1

1x2?4p2;

解析几何知识点总结

N为垂足,BD?l,AH?l,D,H

(6)1?1?2; |FA||FB|p

(7)A,O,D三点在一条直线上

(8)过M作ME?AB,ME交x轴于E,求证:|EF|?1|AB|,|ME|2?|FA|?|FB|; 2

关于双曲线知识点的补充:

1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹。 e(e?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。

注意: |PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2|)表示双曲线的一支。 2a?|F1F2|表示两条射线;2a?|F1F2|没有轨迹;

2、 双曲线的标准方程

x2y2y2x2

①焦点在x轴上的方程:2?2?1(a>0,b>0); ②焦点在y轴上的方程:2?2?1 (a>0,b>0); abab

③当焦点位置不能确定时,也可直接设椭圆方程为:mx2-ny2=1(m〃n<0);

④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程.

3、双曲线的渐近线: ①求双曲线x

a22?y?1的渐近线,可令其右边的2b21为0,即得x2a2?y

b22x2y2?0,因式分解得到。②与双曲线2?2?1共渐近线的双曲线系方程是ab

x2y2

???; a2b2

4、等轴双曲线: 为x2?y2?t2,其离心率为2

5、共轭双曲线:

6、几个概念:

b22b2?x2y2

22③等轴双曲线x-y=? (?∈R,?≠0):渐近线是y=±x,2 ;④2?2?1焦点三角形的面积:b2cotca2ab

(其中∠F1PF2=?);

⑤弦长公式:

解析几何知识点总结

|AB|=c2=a2-b2,而在双曲线中:c2=a2+b2,

解析几何知识点总结

8、双曲线中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。 关于椭圆知识点的补充: 1、椭圆的标准方程:

x2y2y2x2

① 焦点在x轴上的方程:2?2?1 (a>b>0); ②焦点在y轴上的方程:2?2?1 (a>b>0);

abab

?x?acos?

③当焦点位置不能确定时,也可直接设椭圆方程为:mx2+ny2=1(m>0,n>0); ④、参数方程:?

?y?bsin?2、椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹。

|PF1|

e(0?e?1)椭圆的焦半径公式:|PF1|=a+ex0,

d|PF2|=a-ex0)其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。 常数叫做离心率。 注意: 2a?|F1F2|表示椭圆;2a?|F1F2|表示线段F1F2;2a?|F1F2|没有轨迹;

b22b2?x2y2

3、 焦准距:、通径:、点与椭圆的位置关系; 6、2?2?1焦点三角形的面积:b2tan (其中∠F1PF2=?);

ca2ab7、弦长公式:

解析几何知识点总结

8、 椭圆在点P(x0,y0)处的切线方程:

x0xy0y

?2?1; 2ab

9、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x或y,得到关于y或x的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。 10、椭圆中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的变化范围;第二种?是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围

椭圆图象及几何性质:

解析几何知识点总结

解析几何知识点总结

 

第二篇:解析几何综合题解题方法总结

解析几何综合题解题方法总结

富源县第一中学

      

解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.

一、判别式

案例1 已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。

分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与平行的直线,必与双曲线C相切. 而相切的代数表现形式是所构造方程的判别式. 由此出发,可设计如下解题思路:

解题过程略.

分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线的距离为”,相当于化归的方程有唯一解. 据此设计出如下解题思路:

 


简解:设点为双曲线C上支上任一点,则点M到直线的距离为:

                          

于是,问题即可转化为如上关于的方程.

由于,所以,从而有

于是关于的方程

    

    

    

 由可知:

 方程的二根同正,故恒成立,于是等价于

.

    由如上关于的方程有唯一解,得其判别式,就可解得  .

点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.

2    判别式与韦达定理

例2   .已知椭圆C:和点P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使,求动点Q的轨迹所在曲线的方程.

分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q的横、纵坐标用参数表达,最后通过消参可达到解题的目的.

由于点的变化是由直线AB的变化引起的,自然可选择直线AB的斜率作为参数,如何将联系起来?一方面利用点Q在直线AB上;另一方面就是运用题目条件:来转化.由A、B、P、Q四点共线,不难得到,要建立的关系,只需将直线AB的方程代入椭圆C的方程,利用韦达定理即可.

通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.

 

    在得到之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于的方程(不含k),则可由解得,直接代入即可得到轨迹方程。从而简化消去参的过程。

简解:设,则由可得:

解之得:              (1)

设直线AB的方程为:,代入椭圆C的方程,消去得出关于 x的一元二次方程:

      (2)

∴  

代入(1),化简得:                                (3)

联立,消去得:

在(2)中,由,解得 ,结合(3)可求得

故知点Q的轨迹方程为:  ().

点评:由方程组实施消元产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.

求根公式

例3.  设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.

分析:本题中,绝大多数同学不难得到:=,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.

分析1:    从第一条想法入手,=已经是一个关系式,但由于有两个变量,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB的斜率k. 问题就转化为如何将转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于的一元二次方程,其求根公式呼之欲出.

 

简解1:当直线垂直于x轴时,可求得;

与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去,解之得 

因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.

时,

所以 ===.

由  , 解得

所以   

综上  .

   

分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于的对称关系式.

 

简解2:设直线的方程为:,代入椭圆方程,消去

         (*)

,令,则,

在(*)中,由判别式可得

从而有   

所以    

解得      .

结合.

综上,.

点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.

解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利并不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.

相关推荐