用拉伸法测量金属丝杨氏模量实验的改进

研究报告 大学物理实验 序号:05

用拉伸法测量金属丝杨氏模量实验的改进

普通物理实验中,在测量金属丝长度时,是在架子上直接利用钢尺进行测量的,这样既不便测量又会造成较大的测量误差;在测量平面镜与标尺之间的距离时,是直接利用钢尺进行测量的,这样测量不易保证钢尺的水平性,从而增加了测量误差;在测量金属丝伸长量时,实验利用光杠杆和望远镜等仪器,操作比较麻烦,在调整望远镜及标尺位置时,不易与平面镜对准,而且从望远镜中读数时,视线不易与刻度线平齐、容易使眼疲劳和晃动望远镜,这都会造成较大的读数误差;在加砝码后,砝码经常会持续的晃动,使金属丝受力大小不停的变化,不利于读数,也会影响测量结果。为了使实验更具准确性及学习性,以下我将从这四个方面对该实验进行改良。

针对直接在仪器上用钢尺对待侧金属丝进行测量造成的误差,我将利用灵敏度较大的欧姆表来代替钢尺进行测量。做实验时,先利用欧姆表测量0.5米待测金属丝的电阻,算出单位长度金属丝的电阻R1,然后再测量我们做实验时,钢丝上夹头与下夹头之间金属丝的电阻R2,再利用L=R2/R1求出金属丝的长度。我认为这样改良,虽然增加了实验的复杂性,而且增加了欧姆表这个实验仪器,从而增加了实验的开支,但这样可以使学生多学一些知识,例如:学生对欧姆表的使用以及金属丝电阻与长度的关系等知识的学习。而且这样改良也可以减少金属丝的测量误差,从而使实验结果更加准确。

对于测量两个物体之间水平距离时,如何保证钢尺良好的水平性,我将利用连通器原理进行改良。在做实验时,取一个塑料细管,把管内注入一些水,然后把细管的一端放在其中一个物体的边缘,把另一端放在另一物体的边缘,测量时钢尺的两端与塑料管两端管内的水面平齐,这样就可以保证钢尺在测量时的水平性,从而更加准确的测量出两物体之间的水平距离,减少实验误差。而且该实验中利用了连通器的原理,也能使学生更加深入的掌握连通器原理,并活学活用,利用连通器原理对生活的一些方法进行改良,例如:在工地上对同一高度做标记时,就可以利用连通器原理来找出同一高度的位置。有利于学生知识与动手能力的培养。

针对利用光杠杆和望远镜等仪器出现的问题,我将通过改变仪器来消除。我利用的也是光杠杆原理,我把放置平面镜的地方换成了我初中时玩的一种激光灯

研究报告 大学物理实验 序号:05 (该灯可以发出很细且带色的光线,而且光线强度较强)。在做实验时,把激光灯前端放在支架上,后端放在与金属丝 相连的圆座上,使得在拉金属丝时,激光灯发出光线与水平夹角随着金属丝的长度的变化而变化。在装有标尺与望远镜的铁架上只保留一个标尺,在做实验时,调整铁架的位置,使得激光灯发出的光线照在标尺上,在这一步中,因为激光灯发出的光线是有色且亮的,故很容易调整标尺的位置。因为不需要通过望远镜来读数了,就不会有因为望远镜晃动而产生误差了,而且直接在标尺上读数,容易使视线与刻度线平齐,降低眼疲劳等问题,使得读数更加准确。这样改良实验,既能减少实验的难度,又能使实验测量的数据更加准确,而且由于我 利用的那种激光灯相对于望远镜等仪器很便宜,故还可以节约实验的开支。

针对砝码晃动引起金属丝受力不断变化,从而导致读数误差增大这一问题,我将在砝码周围增加一些器件来使其停止晃动。我的具体方法是,在装有待测金属丝的杨氏模量仪底座上安装两根相互垂直的滑杆,且两杆的中心相互重叠,在两个滑杆上分别套上两个带套的铁片,这两个铁片分别在杆中心的两边,而且这些铁片的套上分别都有一个螺帽,拧动螺帽可以控制铁片在滑杆上的滑动及静止。做实验时,在把砝码放到砝码盘后,滑动滑杆上的四个铁片,使铁片贴在砝码上,但不给砝码竖直方向上的力,并拧动螺帽固定铁片,从而使砝码停止 晃动,然后再进行读数,这样就会消除由于砝码晃动造成读数的困难以及造成的读数误差。这样改良实验,虽然增加了实验器件,从而增加了实验开支,以及增加了实验操作的复杂性,但有利于学生动手能力的培养,以及增加实验结果的准确性。综合起来,这样改良还算可以。

 

第二篇:用拉伸法测材料弹性模量

 实验21    用拉伸法测杨氏模量

                                                 林一仙          

1 实验目的

1)掌握拉伸法测定金属杨氏模量的方法;

2)学习用光杠杆放大测量微小长度变化量的方法;

3)学习用作图法处理数据。

2 实验原理

相关仪器:

杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。

2.1杨氏模量

任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。

设金属丝的长度为L,截面积为S,一端固定,

一端在延长度方向上受力为F,并伸长△L,如图

21-1,比值:

是物体的相对伸长,叫应变。

是物体单位面积上的作用力,叫应力。                 

根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即

则有        

             (1)

(1)式中的比例系数Y称为杨氏弹性模量(简称杨氏模量)。                                                 

    实验证明:杨氏模量Y与外力F、物体长度L以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。

根据(1)式,测出等号右边各量,杨氏模量便可求得。(1)式中的F、S、L三个量都可用一般方法测得。唯有是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。

2.2光杠杆的放大原理

如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

  (2)       

这时望远镜中看到的刻度为,而且,所以就有:

(3)

采用近似法原理不难得出:

(4)    这就是光杠杆的放大原理了。

将(4)式代入(1)式,并且S=πd2,即可得下式:

                

这就是本实验所依据的公式。

2.3 实验步骤

1)将待测金属丝下端砝码钩上加1.000kg砝码使它伸直。调节仪器底部三脚螺丝,使G平台水平。

2)将光杠杆的两前足置于平台的槽内,后足置于C上,调整镜面与平台垂直。

3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D约为1.5米左右。

4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L。

    5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。

6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。

7)每次将1.000kg砝码轻轻地加于砝码钩上,并分别记下读数、…、,共做5次。

8)每次减少1.000kg砝码,并依次记下记读数,…、

9)当砝码加到最大时(如6.000kg)时,再测一次金属丝上、中、下的直径d,并与挂1.000kg砝码时对应的直径求平均值,作为金属丝的直径d值。

10)用卡尺测出光杠杆后足尖与前两足尖的距离h,用尺读望远镜的测距功能测出D长短叉丝的刻度差乘100)。

11)用图解法处理实验数据确定测量结果及测量不确定度。

 2.4注意事项

1)光杠杆及镜尺系统一经调好,中途不得再任意变动,否则所测数据无效。

    2)加、减砝码要细心,须用手轻轻托住砝码托盘,不得碰动仪器;而且需待钢丝伸缩稳定后方可读数。

    3)在测量钢丝伸长量过程中,不可中途停顿而改测其他物理量(如d、L、D等),否则若中途受到另外干扰,则钢丝的伸长(或缩短)值将发生变化,导致误差增大。

3 数据处理

1)  实验数据记录表格

表1相关数据的测量

2)  用作图法处理数据确定的测量结果及不确定度;

3)  计算钢丝的杨氏模量的测量结果及不确定度。

;

;

 

4 实验结果:

5 思考题(讨论)

1)本实验为什么用不同仪器来测定各个长度量?

2)光杠杆法能否用来测量一块薄金属片的厚度?如何测量?

3)调节光杠杆镜尺系统时,若遇到下列现象时你将如何处理(即如何调节)?

(1)用望远镜找标尺的像时,看到了光杠杆的镜面,而看不到标尺的像。

    (2)某一同学已调好的光杠杆系统(他确已调好了),但你去看时感到标尺的像很模糊。

相关推荐