20xx年电气工程心得体会

黑龙江省20xx年度专业技术人员继续教育知识更新培训学习心得

太阳能光伏发电系统的电能变换与控制技术

学习心得体会

通过本次20xx年度专业技术人员继续教育知识更新培训我学习了太能光伏发电系统的电能变换与控制系统,我了解到现今太阳能巨大,即使像上海这种太阳能资源不算丰富的地区(属三类地区),太阳每年照射在水平面上的能量也有4 600 MJ/m2左右,相当1280度电能。太阳能是一种聚变能,根据太阳的质量和爱因斯坦的质能转换理论,太阳还可以“燃烧”800亿年,相对于人类5000年历史而言,这几乎是一个天文数字的时间长度。太阳能清洁无污染,安全无毒害,是理想的可持续发展能源之一。向太阳索取电能是工业化发展到今天、大量化石能源被消耗且面临枯竭的必然趋势。太阳能光伏发电技术是人类向太阳索取电能的重要途径。

一、太阳能光伏发电系统

光伏发电技术离网系统与公共电网没有直接的联系,其规模小至几百瓦的照明电源,大至上百千瓦的独立光伏电站。它特别适用于岛屿、深山、荒漠、大草原等无电地区,也适用于城市中铺设线路困难且成本高的场所,如书报亭、岗亭、高速公路指示灯和沿途休息场所的用电等。零售的太阳能草坪灯、太阳能计算器中的电源也是该系统技术的应用。由于光伏发电技术离网系统除了太阳能外无需外界能源支持,因此,它还可用作空间站电源。

二、光伏发电技术并网系统

太阳电池发的电是直流,通过控制逆变装置变换成交流,经过相位整合后同电网的交流电合起来使用。采用这种形态的光伏发电技术系统就是光伏发电技术并网系统。光伏发电技术 并网供电形式是光伏发电技术系统技术的主流发展趋势。系统技术日益完善,系统形式也越来越多样化。目前有无蓄电池无逆流(即不向电网倒送电)系统、有蓄电池无逆流系统、有逆流系统(光伏发电技术系统剩余电力向电网输送,由电力部门回购),随着技术进步,今后将发展微网系统、智能电网系统和全球光伏发电技术供电系统。

三、微网系统

1

黑龙江省20xx年度专业技术人员继续教育知识更新培训学习心得

太阳辐射到地面任一点的功率密度一年四季每时每刻都在变化,是一种不稳定的供能源泉,也是太阳能光伏发电与核能发电或火力发电的不同之处。光伏发电技术系统的输出功率受气候影响,输出的电能时刻变化,与电网连接后会给电网带来不稳定。光伏发电技术 系统普及量不大时这种影响不明显,当大规模太阳能光伏发电并网输电时,供电波动问题将凸显出来,因此,必须开发把这种不稳定影响限制在最小的控制技术,如能彻底解决这一问题,则人类在电力使用方面可高枕无忧了。

微网系统是一种独立性很强的分散型电源网络,是解决上述问题的新一代电网技术。该系统是由太阳能光伏发电、风力发电、小水力发电、生物质发电、燃气发电或柴油发电、燃料电池、蓄电池组等任意组合起来,再加入计量和控制装置,自成系统,独立于大电网或间歇与大电网连接,不需要长距离输电线(电缆)和架空铁塔等大型设备,投资省,不需要大规模投资,也解决了远距离运输大型设备的成本,尤其可以解决大型发电设备运往岛屿和山区的困难。由于其自我调衡,因此,能把可再生能源发电对大电网的扰动减少到最低程度,还能改善家庭太阳能发电系统从发电、用电到蓄电的效率。它还是解决无法实施大型火力或核能发电的小国、岛国、穷困地区日常用电的最佳方案。该技术目前尚处于研究和完善阶段,但可以预期其进入实际应用将为期不远。

四、智能电网系统

智能电网的提出并非偶然,是有多种原因的,其中很重要的因素就是分散型的可再生能源(太阳能、风能、生物质能等)电力的大量应用和上网造成电网管理日益复杂和困难,且势头已不可逆转,需要改革传统的管理方式,运用现代高科技来调控和管理。作为大规模接纳可再生能源电力的电网技术必须做到对频率和电压波动的抑制,同时维持和提高电力质量,并提高电力的使用效率。其主要手段是在微网供配电技术基础上借助通信网络(移动通信、无线通信等)来把握安装有光伏发电技术系统的家庭、办公楼等用电户与发电厂之间供需电情况,进行远距离监测和控制。可以说,智能电网是利用微网技术和IT技术形成的新一代电网。据资料称,日本搞智能电网技术研究的科技人员中有70%来自于IT行业,这足以说明IT技术与智能电网技术的密切关系。发挥IT在快速准确传递信息方

2

黑龙江省20xx年度专业技术人员继续教育知识更新培训学习心得

面的技术特点,在国家一级的广大区域内实时掌控电力使用状况和发电状况,进行电力需求调整,包括对光伏发电技术电力和风电等不稳定电力进行调控。

在智能电网中,蓄电装置仍然是不可或缺的重要支柱,整个蓄电系统将包括电动车(EV)内的蓄电池。电动车的大规模应用为蓄电提供了辅助容量,很可能将来电动车会成为智能电网中蓄电系统的最有力的支持,成为能奔跑的蓄电库和紧急救援用辅助电源。目前,能适应快速充放电的高功率密度和高能量密度蓄电池仍然是一项瓶颈技术。根据日本野村证券金融经济研究所预测,20xx年至20xx年,日美欧在智能电网上的投资将达12500亿美元,其中蓄电系统投资占60% ,足见蓄电系统在智能电网中的地位。

五、太阳能光伏并网发电系统的发展

并网光伏发电技术是当今世界光伏发电的趋势,是光伏技术步入大规模发电阶段,成为电力工业组成部分之一的重大技术步骤。与离网运行的太阳能光伏电站相比,并入大电网可以给太阳能光伏发电带来诸多好处。首先,不必考虑负载供电的稳定性和供电质量问题;其次,光伏电池可以始终运行在最大功率点处,由于大电网来接纳太阳能所发的全部电能,提高了太阳能发电的效率;再次,省略了蓄电池作为储能环节,降低了蓄电池充放电过程中的能量损失,免除了由于存在蓄电池而带来的运行与维护费用,同时也消除了处理废旧蓄电池带来的间接污染。

并网光伏发电系统一般由光伏阵列模块、逆变器和控制器三部分组成。

(一)太阳能光伏井网逆变器的发展

太阳能光伏并网逆变器是连接光伏阵列模块和电网的关键部件,它完成控制光伏阵列模块运行于最大功率点和向电网注入正弦电流两大主要任务。

早期太阳能光伏并网系统的逆变器结构采用单级无变压器、电压型全桥逆变结构。其特点是结构简单、造价低、鲁棒性强;但受限于当时开关器件水平,系统的输出功率因数只有0.6~0.7,且输出电流谐波大。随着电子开关器件的发展,开关频率高于l6kHz的高频器件,如BJT、MOSFET或IGBT等,逐渐取代了晶闸管。带工频变压器结构的光伏逆变系统。它最大优点是逆变器在低压侧,因此逆变桥可以采用高频低压器件MOSFET,从而节省了初期投资;而且由于在低压侧实现逆变器的控制,使得整个控制过程更容易实现。另外,此结构还适用于大电

3

黑龙江省20xx年度专业技术人员继续教育知识更新培训学习心得

流光伏模块。然而工频升压变压器体积大,效率低,价格也很昂贵,随着电力电子技术和微电子技术的进一步发展,这一问题采用高频升压变换得到了解决。高频升压变换能实现更高功率密度的逆变,如图1-4所示,升压变压器采用高频磁芯材料,工作频率均在20kHz以上。它体积小、重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(通常在300V以上),再由工频逆变电路实现逆变。

光伏逆变器由单级到多级的发展,使电能转换级数增加,能够方便满足最大功率点跟踪和直流电压输入范围的要求;但是单级逆变器结构紧凑,元器件少,损耗更低,逆变器转换效率更高,更易控制。因此在结合两者优点的前提下,尽可能提高直流输入电压,就能提高逆变器的转换效率。

(二)太阳能光伏并网发电系统控制策略的发展

光伏发电系统实现并网运行必须满足:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(功率因数为1),而且其输出还应满足电网的电能质量要求。这些都依赖于逆变器的有效控制策略。光伏并网发电系统的控制一般分为两个环节:第一个环节得到系统功率点,既光伏阵列模块工作点;第二个环节完成光伏逆变系统对电网的跟踪。同时,为保证光伏逆变器安全有效地直接工作于并网状态,系统必须具备一定的保护功能和防孤岛效应的检测与控制功能。

近几年,光伏并网系统的综合控制成为其研究发展的新趋势。基于瞬时无功理论的无功与谐波电流补偿控制使得光伏并网发电系统既可以向电网提供有功功率,又可实现电网无功和谐波电流补偿。这对逆变器跟踪电网控制的实时性、动态特性要求更高。研究适合于这类光伏发电系统的控制方法对电网电能质量的提高具有重大意义。

事实上把光伏发电技术 技术推广应用到普通家庭,发挥家用光伏发电技术系统不占地、就地发电就地使用、减少输电损失、故障就地解决的优点,将更能体现光伏发电技术技术的综合经济效益。大城市的电网四通八达,如能充分利用家用光伏发电技术系统的优点,大力推广并网型家用光伏发电技术系统,则对建设资源节约型和环境友好型社会具有极大的价值和社会效益。相信只要中国也出台绿电回购政策,有逆流光伏发电技术 系统将会得到大规模的发展。

4

黑龙江省20xx年度专业技术人员继续教育知识更新培训学习心得

从200年前的工业革命开始,人类在大规模开发利用矿物能源的过程中,既获得了电动机械、高速交通工具、成千上万种家电和霓虹闪烁的夜生活带来的享受,也饱受了煤炭石油造成的无情污染和气候变化之苦,并且每时每刻都把自己置身于切尔诺贝利核电泄露事件那样的威胁之下。到如今,连这种乐中带苦的“享受”也难以为继了,我们无法得知矿物能源枯竭的那一天何时到来,但是人类已经感觉到这种威胁的日益逼近。随着时代的进步和科技的发展,大规模利用太阳能光伏发电技术进行太阳能发电已经蓬勃兴起,也许清洁、无污染、永不枯竭的太阳能才能真正地让人类从此走上一条可持续发展之路。

学员信息:

5

 

第二篇:20xx年电气工程继续教育心得体会

学习心得

本次继续教育,以电气专业技术人才的能力建设为核心,以提高专业技术人员的创新能力、专业水平和科学素质为目的,哈尔滨工业大学继续教育学院通过组织自学和面授辅导的方式,强化我们的专业知识,使我了解本专业的科技发展动态,掌握本专业的最新科技理论和技术成果,继续教育专业、公需课程等内容精彩而丰富。使我初步掌握了TRIZ的核心思想和解题模式,通过对无运动控制系统中直流拖动控制系统知识的学习,使我进一步掌握了运动控制系统中的直流拖动控制系统基础理论知识,加深了对直流控制系统的认识和理解,为今后在实际工作中的理论和实践相结合打下了坚实的基础。通过培训,我学习了关于直流拖动控制系统的理论基础知识。了解到直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以直流拖动控制系统的学习非常必要。下面就我学习的知识进行简单总结:

一、直流拖动系统三种调速方法及各自工特性

直流调速方法

根据直流电动机转速方程,有三种方法调节直流电动机的转速:

(1)调节电枢供电电压 U。(调压调速)

(2)减弱励磁磁通 ?。(调阻调速)

(3)改变电枢回路电阻 R。(调磁调速)

三种调速方法的性能与比较:

因此,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。因此,直流调速系统往往以调压调速为主。

二、直流调速系统用的可控直流电源

调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。这种可控直流电源分为:

(1)旋转变流机组——用交流电动机和直流发电机组成机组,获得可调的直流电压。

(2)静止式可控整流器——用静止式的可控整流器获得可调的直流电压。

1

(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,产生可变的平均电压。

三、直流调速系统的分类、组成、工作原理及特性

直流调速系统可分为两大类,即:开环调速系统和闭环调速系统。

由于开环调速系统在实际应用中存在着局限性,而且在调速性能也不能满足调速精度的要求,故开环调速已不能满足要求,需采用反馈控制的闭环调速系统来解决这些问题。

根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。

调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统能够大大减少转速降落。

系统组成

20xx年电气工程继续教育心得体会

图1-24 带转速负反馈的闭环直流调速系统原理框图

调节原理

在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机 TG ,从而引出与被调量转速成正比的负反馈电压Un ,与给定电压 U*n 相比较后,得到转速偏差电压 ?Un ,经过放大器 A,产生电力电子变换器UPE的控制电压Uc ,用以控制电动机转速 n。

UPE是由电力电子器件组成的变换器,其输入接三组(或单相)交流电源,输出为可控的直流电压,控制电压为Uc 。

目前,组成UPE的电力电子器件有如下几种选择方案:

(1) 对于中、小容量系统,多采用由IGBT或P-MOSFET组成的PWM 变换器。

(2) 对于较大容量的系统,可采用其他电力电子开关器件,如GTO、IGCT等。

2

(3) 对于特大容量的系统,则常用晶闸管触发与整流装置。

反馈控制系统的规律是:一方面能够有效地抑制一切被包在负反馈环内前向

通道上的扰动作用;另一方面,则紧紧地跟随着给定作用,对给定信号的任何变化都是唯命是从的。

四、转速、电流双闭环直流调速系统的工程设计问题

(一)转速、电流双闭环直流调速系统

为实现在单闭环系统中能随心所欲地控制电流和转矩的动态过程及实现在

允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程,采用电流负反馈来实现近似的恒流过程达到控制目的。即:起动过程,只有电流

负反馈,没有转速负反馈;同时稳态时,只有转速负反馈,没有电流负反馈。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,

分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。

1. 系统的组成

20xx年电气工程继续教育心得体会

转速、电流双闭环直流调速系统结构

ASR—转速调节器 ACR—电流调节器 TG—测速发电机

TA—电流互感器 UPE—电力电子变换器

图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出

去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。

2. 系统电路结构

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用 P I 调

节器,这样构成的双闭环直流调速系统的电路原理图示于下图。

(1) 转速调节器ASR的输出限幅电压U*im决定了电流给定电压的最大

值;

3

(2) 电流调节器ACR的输出限幅电压Ucm限制了电力电子变换器的最大输出电压Udm。

20xx年电气工程继续教育心得体会

双闭环直流调速系统的电路原理图

(二)双闭环直流调速系统

1. 系统动态结构

在单闭环直流调速系统动态数学模型的基础上,考虑双闭环控制的结构,即可绘出双闭环直流调速系统的动态结构框图,如下图所示。

20xx年电气工程继续教育心得体会

图2-6双闭环直流调速系统的动态结构框图

五、直流调速系统的数字控制

虽然模拟系统具有物理概念清晰、控制信号流向直观等优点,但其控制规律体现在硬件电路和所用的器件上,因而线路复杂、通用性差,控制效果受到器件的性能、温度等因素的影响。为了适应不断发展的技术要求,随着电子技术的发展,以微处理器为核心的数字控制系统(简称微机数字控制系统)硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响;其控制软件能够进行

4

逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律,而且更改起来灵活方便。

微机数字控制系统的稳定性好,可靠性高,可以提高控制性能,此外,还拥有信息存储、数据通信和故障诊断等模拟控制系统无法实现的功能。

由于计算机只能处理数字信号,因此,与模拟控制系统相比,微机数字控制系统的主要特点是离散化和数字化。

六、掌握可逆系统的结构、工作原理、控制方式和性能。

(一)单片微机控制的PWM可逆直流调速系统结构

中、小功率的可逆直流调速系统多采用由电力电子功率开关器件组成的桥式可逆PWM变换器。

系统组成

20xx年电气工程继续教育心得体会

图4-1 PWM可逆直流调速系统原理图

UR—整流器;

UPEM—桥式可逆电力电子变换器,主电路与图1-22相同,须要注意的是,直流变换器必须是可逆的;

GD—驱动电路模块,内部含有光电隔离电路和开关放大电路;

UPW—PWM波生成环节,其算法包含在单片微机软件中;

TG—为测速发电机,当调速精度要求较高时可采用数字测速码盘;

TA—霍尔电流传感器;

V-M系统的可逆线路

根据电机理论,改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向。因此,V-M系统的可逆线路有两种方式:

(1)电枢反接可逆线路;

(2)励磁反接可逆线路。

5

总之,通过本次20xx年度专业技术人员继续教育知识更新培训的学习,体会到直流调速系统的发展是一个从简单到复杂、从开环到闭环、从单环到多环、从单向调速到可逆调速的不断丰富和完善的过程。单闭环不仅是转速闭环一种,根据实际应用要求不同可以采用电压负反馈、电流补偿等替代措施。有环流可逆调速系统和无环流可逆调速系统都在不断完善和发展之中。其次,随着电子技术的发展,微型控制器及计算机在调速技术的得到了广泛的使用,使运动控制技术得到了突破性的发展。

通过本次培训,使我在运动系统控制技术方面的理论知识得到了拓展和提高,在以后的工作和实践中进一步深入学习和研究,并不断在实践中加以利用,为做好本职工作打好、打实理论基础。

6

相关推荐