高中物理会考知识点总结打印

第一、二章 运动的描述和匀变速直线运动

一、质点

1.定义:用来代替物体而具有质量的点。

2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。

二、描述质点运动的物理量

1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。

2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。

3.速度:用来描述物体位置变化快慢的物理量,是矢量。

(1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。

(2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。

(3)速度的测量(实验)

①原理:。当所取的时间间隔越短,物体的平均速度越接近某点的瞬时速度v。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。

②仪器:电磁式打点计时器(使用4∽6V低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V交流电,纸带受到的阻力较小)。若使用50Hz的交流电,打点的时间间隔为0.02s。还可以利用光电门或闪光照相来测量。

4.加速度

(1)意义:用来描述物体速度变化快慢的物理量,是矢量。

(2)定义:,其方向与Δv的方向相同或与物体受到的合力方向相同。

(3)av0同向时,物体做加速直线运动;当av0反向时,物体做减速直线运动。加速度与速度没有必然的联系

三、匀变速直线运动的规律

1.匀变速直线运动

(1)定义:在任意相等的时间内速度的变化量相等的直线运动。

(2)特点:轨迹是直线,加速度a恒定。当av0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。

2.匀变速直线运动的规律

(1)基本规律

①速度时间关系:   ②位移时间关系:

(2)重要推论

①速度位移关系:   ②平均速度:

③做匀变速直线运动的物体在连续相等的时间间隔的位移之差:Δx=xn+1-xn=aT2

3.自由落体运动

(1)定义:物体只在重力的作用下从静止开始的运动。

(2)性质:自由落体运动是初速度为零,加速度为g的匀加速直线运动。

(3)规律:与初速度为零、加速度为g的匀加速直线运动的规律相同。

第三章.相互作用

一、力的性质

1.物质性:一个力的产生仅仅涉及两个物体,我们把其中一个物体叫受力物体,另一个物体则为施力物体。

2.相互性:力的作用是相互的。受力物体受到施力物体给它的力,则施力物体也一定受到受力物体给它的力。

3.效果性:力是使物体产生形变的原因;力是物体运动状态(速度)发生变化的原因,即力是产生加速度的原因。

4.矢量性:力是矢量,有大小和方向,力的三要素为大小、方向和作用点。

5.力的表示法

(1)力的图示:用一条有向线段精确表示力,线段应按一定的标度画出。

(2)力的示意图:用一条有向线段粗略表示力,表示物体在这个方向受到了某个力的作用。

二、三种常见的力

1.重力

(1)产生条件:由于地球对物体的吸引而产生。

(2)三要素①大小:G=mg。②方向:竖直向下,即垂直水平面向下。

③作用点:重心。形状规则且质量分布均匀的物体的重心在其几何中心。物体的重心不一定在物体上。

2.弹力

(1)产生条件:物体相互接触且发生弹性形变。

(2)三要素

①大小:弹簧弹力大小满足胡克定律F=kx。其它的弹力常常要结合物体的运动情况来计算。

②方向:弹簧和轻绳的弹力沿弹簧和轻绳的方向。支持力垂直接触面指向被支持的物体。压力垂直接触面指向被压的物体。

③作用点:支持力作用在被支持物上,压力作用在被压物上。

3.摩擦力

(1)产生条件:有粗糙的接触面、有相互作用的弹力和有相对运动或相对运动趋势。

(2)三要素

①方向:滑动摩擦力方向与相对运动方向相反;静摩擦力的方向与相对运动趋势方向相反。

②大小:

A.滑动摩擦力的大小Ff=μFN。其中μ为动摩擦因数。FN为滑动摩擦力的施力物体与受力物体之间的正压力,不一定等于物体的重力。

B.静摩擦力的大小要根据受力物体的运动情况确定。静摩擦力的大小范围为0<FfFm

③作用点:在接触面或接触物上。

三、力的运算

合力与分力是等效替代关系,力的运算遵循平行四边形定则,分力为平行四边形的两邻边,合力为两邻边之间的对角线。平行四边形定则(或三角形定则)是矢量运算法则。

1.力的合成:已知分力求合力叫做力的合成。

实验探究:探究力的合成的平行四边形定则

(1)实验原理:合力与分力的实际作用效果相同。实验中使橡皮条伸长相同的长度。

(2)减小实验误差的主要措施:

①保证两次作用下橡皮条的形变情况相同(细绳与橡皮条的结点到达同一点)。

②利用两点确定一条直线的办法记下力的方向,所以两点的距离要适当远些,细绳应长一些。

③将力的方向记在白纸上,所以细绳应与纸面平行。

④实验采用力的图示法表示和计算合力,应选定合适的标度。

2.力的分解:已知合力求分力叫做力的分解。力要按照力的实际作用效果来分解。

3.力的正交分解:它不需要按力的实际作用效果来分解,建立直角坐标系的原则是方便简单,让尽可能多的力在坐标轴上,被分解的力越少越好。

第四章.牛顿运动定律

1.牛顿第一定律的含义:一切物体都具有惯性,惯性是物体的固有属性;力是改变物体运动状态的原因;物体运动不需要力来维持。

2.惯性:物体具有保持原来匀速直线运动状态或静止状态的性质,叫做惯性。质量是物体惯性大小的量度。

二、牛顿第二定律

1.牛顿第二定律揭示了物体的加速度与物体的合力和质量之间的定量关系。力是产生加速度的原因,加速度的方向与合力的方向相同,加速度随合力同时变化。

2.控制变量法“探究加速度与力、质量的关系”实验的关键点

(1)平衡摩擦力时不要挂重物,平衡摩擦力以后,不需要重新平衡摩擦力。

(2)当小车和砝码的质量远大于沙桶和砝码盘和砝码的总质量时,沙桶和砝码盘和砝码的总重力才可视为与小车受到的拉力相等,即为小车的合力。

(3)保持砝码盘和砝码的总重力一定,改变小车的质量(增减砝码),探究小车的加速度与小车质量之间的关系;保持小车的质量一定,改变沙桶和砝码盘和砝码的总重力,探究小车的加速度与小车合力之间的关系。

(4)利用图象法处理实验数据,通过描点连线画出aFa图线,最后通过图线作出结论。

3.超重和失重

无论物体处在失重或超重状态,物体的重力始终存在,且没有变化。与物体处于平衡状态相比,发生变化的是物体对支持物的压力或对悬挂物的拉力。

(1)超重:当物体在竖直方向有向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于重力。

(2)失重:当物体在竖直方向有向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于重力。当物体正好以大小等于g的加速度竖直下落时,物体对支持物的压力或对悬挂物的拉力为0,这种状态叫完全失重状态。

4.共点力作用下物体的平衡

共点力作用下物体的平衡状态是指物体处于匀速直线运动状态或静止状态。处于共点力平衡状态的物体受到的合力为零。

三、牛顿第三定律

牛顿第三定律揭示了物体间的一对相互作用力的关系:总是大小相等,方向相反,分别作用两个相互作用的物体上,性质相同。而一对平衡力作用在同一物体上,力的性质不一定相同。

第五章.曲线运动

要点解读

一、曲线运动及其研究

1.曲线运动

(1)性质:是一种变速运动。作曲线运动质点的加速度和所受合力不为零。

(2)条件:当质点所受合力的方向与它的速度方向不在同一直线上时,质点做曲线运动。

(3)力线、速度线与运动轨迹间的关系:质点的运动轨迹被力线和速度线所夹,且力线在轨迹凹侧,如图所示。

2.运动的合成与分解

(1)法则:平行四边形定则或三角形定则。

(2)合运动与分运动的关系:一是合运动与分运动具有等效性和等时性;二是各分运动具有独立性。

(3)矢量的合成与分解:运动的合成与分解就是要对相关矢量(力、加速度、速度、位移)进行合成与分解,使合矢量与分矢量相互转化。

二、平抛运动规律

1.平抛运动的轨迹是抛物线,轨迹方程为

2.几个物理量的变化规律

(1)加速度

①分加速度:水平方向的加速度为零,竖直方向的加速度为g

②合加速度:合加速度方向竖直向下,大小为g因此,平抛运动是匀变速曲线运动。

(2)速度

①分速度:水平方向为匀速直线运动,水平分速度为;竖直方向为匀加速直线运动,竖直分速度为

②合速度:合速度为(合)速度方向与水平方向的夹角。

(3)位移

①分位移:水平方向的位移,竖直方向的位移

②合位移:物体的合位移

3. 《研究平抛运动》实验

(1)实验器材:斜槽、白纸、图钉、木板、有孔的卡片、铅笔、小球、刻度尺和重锤线。

(2)主要步骤:安装调整斜槽;调整木板;确定坐标原点;描绘运动轨迹;计算初速度。

(3)注意事项

①实验中必须保证通过斜槽末端点的切线水平;方木板必须处在竖直面内且与小球运动轨迹所在竖直平面平行,并使小球的运动靠近木板但不接触。

②小球必须每次从斜槽上同一位置无初速度滚下,即应在斜槽上固定一个挡板。

③坐标原点(小球做平抛运动的起点)不是槽口的端点,而是小球在槽口时球的球心在木板上的水平投影点,应在实验前作出。

④要在斜槽上适当的高度释放小球,使它以适当的水平初速度抛出,其轨道由木板左上角到达右下角,这样可以减少测量误差。

⑤要在轨迹上选取距坐标原点远些的点来计算球的初速度,这样可使结果更精确些。

三、圆周运动的描述

1.运动学描述

(1)描述圆周运动的物理量

①线速度():,国际单位为m/s。质点在圆周某点的线速度方向沿圆周上该点的切线方向。

②角速度():,国际单位为rad/s。

③转速(n):做匀速圆周运动的物体单位时间所转过的圈数,单位为r/s(或r/min)。

④周期(T):做匀速圆周运动的物体运动一周所用的时间,国际单位为s。

⑤向心加速度: 任何做匀速圆周运动的物体的加速度都指向圆心即与速度方向垂直,这个加速度叫做向心加速度,国际单位为m/s2

匀速圆周运动是线速度大小、角速度、转速、周期、向心加速度大小不变的圆周运动。

(2)物理量间的相互关系

①线速度和角速度的关系:   ②线速度与周期的关系:

③角速度与周期的关系:    ④转速与周期的关系:

⑤向心加速度与其它量的关系:

2.动力学描述

(1)向心力:做匀速圆周运动的物体所受的合力一定指向圆心即与速度方向垂直,这个合力叫做向心力。向心力的效果是改变物体运动的速度方向、产生向心加速度。向心力是一种效果力,可以是某一性质力充当,也可以是某些性质力的合力充当,还可以是某一性质力的分力充当。

(2)向心力的表达式:由牛顿第二定律得向心力表达式为。在速度一定的条件下,物体受到的向心力与半径成反比;在角速度一定的条件下,物体受到的向心力与半径成正比。

第六章.万有引力

一、天体的运动规律

从运动学的角度来看,开普勒行星运动定律提示了天体的运动规律,回答了天体做什么样的运动。

1.开普勒第一定律说明了不同行星的运动轨迹都是椭圆,太阳在不同行星椭圆轨道的一个焦点上;

2.开普勒第二定律表明:由于行星与太阳的连线在相等的时间内扫过相等的面积,所以行星在绕太阳公转过程中离太阳越近速率就越大,离太阳越远速率就越小。所以行星在近日点的速率最大,在远日点的速率最小;

3.开普勒第三定律告诉我们:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,比值是一个与行星无关的常量,仅与中心天体——太阳的质量有关。

开普勒行星运动定律同样适用于其他星体围绕中心天体的运动(如卫星围绕地球的运动),比值仅与该中心天体质量有关。

二、天体运动与万有引力的关系

从动力学的角度来看,星体所受中心天体的万有引力是星体作椭圆轨道运动或圆周运动的原因。若将星体的椭圆轨道运动简化为圆周运动,则可得如下规律:

1.加速度与轨道半径的关系:由

2.线速度与轨道半径的关系:由

3.角速度与轨道半径的关系:由

4.周期与轨道半径的关系:由

若星体在中心天体表面附近做圆周运动,上述公式中的轨道半径r为中心天体的半径R

一、求解星体绕中心天体运动问题的基本思路

1万有引力提供向心力

2星体在中心天体表面附近时,万有引力看成与重力相等

二、几种问题类型

1.重力加速度的计算

式中R为中心天体的半径,h为物体距中心天体表面的高度。

2.中心天体质量的计算

(1)由

(2)由

式(2)说明了物体在中心天体表面或表面附近时,物体所受重力近似等于万有引力。该式给出了中心天体质量、半径及其表面附近的重力加速度之间的关系,是一个非常有用的代换式。

3.第一宇宙速度的计算

第一宇宙速度是星体在中心天体附近做匀速圆周运动的速度,是最大的环绕速度。

(1)由=

(2)由=

4.中心天体密度的计算

(1)由

(2)由 和

第七章.机械能守恒定律

一、热量、功与功率

1.热量:热量是内能转移的量度,热量的多少量度了从一个物体到另一个物体内能转移的多少。

2.功:功是能量转化的量度, 力做了多少功就有多少能量从一种形式转化为另一种形式。

(1)功的公式:(α是力和位移的夹角),即功等于力的大小、位移的大小及力和位移的夹角的余弦这三者的乘积。热量与功均是标量,国际单位均是J。

(2)力做功的因素:力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。力做功既可以说成是作用在物体上的力和物体在力的方向上位移的乘积,也可以说成是物体的位移与物体在位移方向上力的乘积。

(3)功的正负:根据可以推出:当0° ≤ α < 90° 时,力做正功,为动力功;当90°< α ≤ 180° 时,力做负功,为阻力功;当 α=90°时,力不做功。

(4)求总功的两种基本法:其一是先求合力再求功;其二是先求各力的功再求各力功的代数和。

3.功率:功跟完成这些功所用的时间的比值叫做功率,表示做功的快慢。

(1)平均功率与瞬时功率公式分别为:和,式中是F与v之间的夹角。功率是标量,国际单位为W。

(2)额定功率与实际功率:额定功率是动力机械长时间正常工作时输出的最大功率。机械在额定功率下工作,Fv是互相制约的;实际功率是动力机械实际工作时输出的功率,实际功率应小于或等于额定功率,发动机功率不能长时间大于额定功率工作。实际功率P=Fv,式中力F和速度v都是同一时刻的瞬时值。

二、机械能

1. 动能:物体由于运动而具有的能,其表达式为

2.重力势能:物体由于被举高而具有的势能,其表达式为EP,其中是物体相对于参考平面的高度。重力势能是标量,但有正负之分,正值表明物体处在参考平面上方,负值表明物体处在参考平面下方。

3.弹性势能:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,而具有的势能。

弹簧弹性势能的表达式为:,其中k为弹簧的劲度系数,为弹簧的形变量。

三、能量观点

1.动能定理(1)内容:合力所做的功等于物体动能的变化。(2)公式表述:

2.机械能守恒定律

(1)内容:在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变。

(2)公式表述:或写成EK2+EP2= EK1+EP1     

(3)变式表述:

①物体系内动能的增加(减小)等于势能的减小(增加);

②物体系内某些物体机械能的增加等于另一些物体机械能的减小。

3.能量守恒定律

(1)内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另外一个物体,而在转化和转移的过程中,能量的总和保持不变。

(2)变式表述:

①物体系统内,某些形式能的增加等于另一些形式能的减小;

②物体系统内,某些物体的能量的增加等于另一些物体的能量的减小。

1-1 电场电流

一、电荷

1.认识电荷

(1)自然界有两种电荷:正电荷和负电荷。

(2)元电荷:任何带电物体所带的电荷量都是e的整数倍,电荷量e叫做元电荷。

(3)点电荷:与质点一样,是理想化的物理模型。只有当一个带电体的形状、大小对它们之间相互作用力的影响可以忽略时,才可以视为点电荷。

(4)电荷的相互作用:同种电荷相互排斥,异种电荷相互吸引。

2.电荷的转移

(1)起电方式:主要有摩擦起电、感应起电和接触起电三种。

(2)起电本质:电子发生了转移。

构成物质的原子是由带正电的原子核和核外带负电的电子组成。一般情况下,原子核的正电荷数量与电子的负电荷数量一样多,整个原子显电中性。起电过程的实质都是使电子发生了转移,从而破坏了原子的电中性,得到电子的物体(或物体的一部分)带上负电荷,失去电子的物体(或物体的一部分)带上正电荷。

3.电荷守恒定律:电荷既不能创生,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量不变。

4.电荷的分布:带电体突出的位置电荷较密集,平坦的位置电荷较稀疏,所以带电体尖锐的部分电场强,容易产生尖端放电。避雷针就是利用了尖端放电的原理。

5.电荷的储存

(1)电容器:两个彼止绝缘且相互靠近的导体就组成了一个电容器。在两个正对的平行金属板中间夹一层绝缘物质——电介质,就形成了一个最简单的平行板电容器。电容器是储存电荷的容器,电容器两极板相对且靠得很近,正负电荷相互吸引,使得两极板上留有等量的异种电荷——电容器就储存了电荷。

(2)电容:电容是表示电容器储存电荷本领大小的物理量。在相同电压下,储存电荷多的电容器电容大;电容的大小由电容器的形状、结构、材料决定;不加电压时,电容器虽不储存电荷,但储存电荷的本领还是具备的——仍有电容。

6.库仑定律:

(1)内容:真空中两个点电荷之间的相互作用力,跟它们的电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上。其表达式:

(2)适用条件:Q1Q2为真空中的两个点电荷。

带电体都可以看成由许多点电荷组成的,根据库仑定律和力的合成法则,可以求出任意两个带电体之间的库仑力。

二、电场

1.电场:电荷周围存在电场,电荷间是通过电场发生相互作用的。

物质存在有两种形式:一种是实物,一种是场。电场虽然看不见摸不着,但它也是一种客观存在的物质,它可以通过一些性质而表现其客观存在,如在电场中放入电荷,电场就对电荷有力的作用。

2.电场强度(1)定义:放入电场中某点的电荷所受的静电力F跟它的电荷量q的比值。其定义式:

(2)物理意义:电场强度是反映电场的力的性质的物理量,与试探电荷的电荷量q及其受到的静电力F无关。它的大小是由电场本身决定的;方向规定为正电荷所受电场力的方向。

(3)基本性质:对放入其中的电荷有力的作用。电场力

3.电场线:电场线是人们为了形象描述电场而引入的假想的曲线,电场线的疏密反映了电场的强弱,电场线上每一点的切线方向表示该点的电场方向 。

不同电场的电场线分布是不同的。静电场的电场线从正电荷或无穷远发出,终止于无穷远或负电荷;匀强电场的电场线是一簇间距相同、相互平行的直线。

三、电流

1.电流:电荷的定向移动形成电流。

(1)形成电流的条件:要有自由移动的电荷,如:金属导体中有可以自由移动的电子、电解质溶液中有可以自由移动的正、负离子;导体两端要有电压,即导体内部存在电场。

(2)电流的大小:通过导体横截面积的电量Q与所用时间t的比值。其表达式:

(3)电流的方向:规定正电荷定向移动的方向为电流的方向。但电流是标量。

2.电源:电源的作用就是为导体两端提供电压,电源的这种特性用电动势来表示。

电源的电动势等于电源没有接入电路时两极间的电压。不同电源的电动势一般不同。

从能量的角度看,电源就是把其它形式的能转化为电能的装置,电动势反映了电源把其它形式的能转化为电能的本领。

3.电流的热效应:电流通过导体时能使导体的温度升高,电能转化成内能,这就是电流的热效应。

(1)焦耳定律:电流通过导体产生的热量,跟电流的二次方、导体的电阻、通电时间成正比。其表达式:

(2)热功率:在物理学中,把电热器在单位时间内消耗的电能叫做热功率。其表达式:,对于纯电阻电路,还可表示为

第二章磁场

要点解读

一、磁场的性质

1.磁场是存在于磁极或电流周围的特殊物质。磁极与磁极之间、磁极与电流之间、电流与电流之间等一切磁作用都是通过磁场来实现的。

2.磁感线

(1)磁感线是用来形象描述磁场的假想的曲线,磁感线的疏密反映了磁场的强弱,磁感线上每一点的切线方向表示该点的磁场方向 。

(2)磁铁外部磁场的磁感线从N极到S极,内部则从S极回到N极,形成闭合且不相交的曲线。直线电流、环形电流、通电螺线管的磁感线的方向用安培定则判定,通电螺线管相当一条形磁铁。地球是个大磁体,地磁的南极在地理的北极附近,但并不完全重合,存在磁偏角。

3.磁感应强度B

(1)磁感应强度是描述磁场中某点磁场的强弱和方向的物理量,是矢量。

(2)在磁场同一地方,电流受到的安培力FIL的比值是一个常量;在磁场中不同地方FIL的比值一般不同,因此可用来描述某处磁场的强弱。定义磁感应强度,但BFIL无关,由磁场本身决定。

(3)磁感应强度B的大小反映了磁场强弱;磁感应强度B的方向就是磁场的方向,即小磁针北极所受磁场力的方向。

二、磁场的作用

1.安培力F:通电导体在磁场中受到的作用力。

(1)大小:当BI垂直时F=BIL,式中L是导体在磁场中的有效长度,I为流过导体的电流;当BI不垂直时,FBILBI平行时,F=0。

(2)方向:F垂直于BIL所决定的平面,既与B垂直,又与IL垂直,方向用左手定则判定。

(3)应用:电动机就是利用通电线圈在磁场中受到安培力的作用发生转动的原理。

2.洛伦兹力F:运动电荷在磁场中受到的作用力。

(1)大小:当vB垂直时,F最大;当vB平行时F=0。v是电荷在磁场中运动的速度。

(2)方向:安倍力是洛伦兹力的宏观体现,所以也可以用左手定则判定洛伦兹力的方向。判定方法是,先根据电荷运动方向判断其形成的等效电流方向,然后运用左手定则判定其受力方向。

(3)应用:电视机显像管利用了电子束在磁场中受到洛伦兹力作用发生偏转的原理。

三、磁性材料

1.物体磁性的变化

(1)磁化:物体与磁铁接触后显示出磁性的现象。

(2)退磁:由于高温或受到剧烈的震动使有磁性的物体失去磁性的现象。

2.磁性材料的应用

(1)根据铁磁性材料被磁化后撤去外磁场时剩磁的强弱,把铁磁性材料分为硬磁性材料和软磁性材料。

(2)根据实际需要可选择不同材料:永磁铁要有很强的剩磁,所以要用硬磁性材料制造;电磁铁需要通电时有磁性,断电时失去磁性,所以要用软磁性材料制造。

第三章 电磁感应  第四章 电磁波及应用

要点解读

一、电磁感应现象

1.磁通量:(1)穿过一个闭合电路的磁感线越多,穿过这个闭合电路的磁通量越大;(2)磁通量用Φ表示,单位是韦伯,符号Wb。

Φ=BS

如图:两个闭合电中路S1S2的面积相同,从穿过S1S 2的磁感线条数可以判断,穿过S1的磁通量Φ1大于穿过S2的磁通量Φ2

2.感应电流产生的条件

产生感应电流的办法有很多,如闭合电路的一部分导体作切割磁感线运动,磁铁与线圈的相对运动,实验电路中开关的通断,变阻器阻值的变化……,从这些产生感应电流的实验中,我们可以归纳出产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流

二、法拉第电磁感应定律

1.内容:电磁感应中线圈里的感应电动势跟穿过线圈的磁通量变化率成正比

2.表达式:(会考计算题)

n为线圈的匝数;ΔΦ是线圈磁通量的变化量,单位是Wb;Δt是磁通量变化所用的时间。

三、交流电

1.交流电的产生:线圈在磁场中转动,由于在不同时刻磁通量的变化率不同,产生大小、方向随时间做周期性变化的电流,这种电流叫交流电。按正弦规律变化的交流电叫正弦交流电。

2.正弦交流电的变化规律

(1)可以用如图所示的正弦(或余弦)图象来表示正弦交流电电流、电压的变化规律。

(2)交流电的峰值、周期、频率

UmIm是电压、电流的最大值,叫做交流电的峰值。

交流电完成一次周期性变化所用的时间叫做交流电的周期T;交流电在1s内发生的周期性变化的次数,叫交流电的频率f,单位是Hz;周期和频率的关系是;我国电网中的交流电频率f =50Hz。

3.交流电的有效值

(1)交流电的有效值是根据电流的热效应规定的:把交流和直流分别通过相同的电阻,如果在相等的时间里它们产生的热量相等,我们就把这个直流电压、电流的数值称做交流电压、电流的有效值。

(2)按正弦规律变化的交流,它的有效值和峰值之间的关系是(UeIe分别表示交流电压、电流的有效值)

Ue ==0.707Um        Ie==0.707Im

四、变压器

1.变压器构造:变压器由原线圈、铁芯和副线圈组成。

2.变压器工作原理

(1)在变压器原线圈上加交变电压U1,原线圈中就有交变电流通过,在闭合铁芯中产生交变的磁通量,这个交变磁通量穿过副线圈,在副线圈上产生感应电动势,感应电动势等于副线圈未接入电路时的电压U2

(2)因每匝线圈上的感应电动势是相等的,匝数越多的线圈,感应电动势越大,电压越高。原线圈匝数为n1,原线圈匝数为n2如果n2n1,则U2U1,这种变压器叫升压变压器;如果n2n1,则U2U1,这种变压器叫降压变压器。

五、高压输电

根据输电线上损失的热功率,减少输电损失的途径有:(1)减少输电线的电阻,可以采用导电性能好的材料做导线,或使导线粗一些;(2)减少输送的电流,根据电功率公式P =UI在输送一定功率的电能时,要减少输送的电流就必须提高输送的电压,采用高压输电。

六、自感现象、涡流

1.自感现象:自感,通俗地说就是“自身感应”,由于通过导体自身的电流发生变化而引起磁通量变化时,导体自身产生感应电动势的现象。

(1)导体中的自感电动势总是阻碍引起自感电动势的电流的变化

(2)对于不同的线圈,在电流变化快慢相同的情况下,产生的自感电动势是不同的,在电学中,用自感系数来表示线圈的这种特性。线圈越粗、越长,匝数越多,它的自感系数就越大,线圈有铁芯时的自感系数比没有铁芯时大得多。

2.涡流:把块状金属放在变化的磁场中,金属块内将产生感应电流,这种电流叫涡流。

可以利用涡流产生的热量,如电磁炉;涡流有时也有害,需减少涡流,如变压器的铁芯。

七、电磁波及其应用

1.麦克斯韦电磁理论要点

(1)变化的电场产生磁场;(2变化的磁场产生电场。

麦克斯韦预示了空间可能存在电磁波,赫兹用实验证实了电磁波的存在。

2.电磁波的特点

(1)电磁波传播不需介质,可在真空中传播;(2)电磁波在真空中传播的速度等于光速c

(3)电磁波与机械波一样,其波速c、波长、频率f之间的关系是

3.电磁波谱

无线电波:波动性明显;红外线:有显著的热作用;可见光:人眼可见;紫外线:产生荧光反应;X射线:贯穿能力强;γ射线:穿透能力很强。

以上排列的电磁波频率由低到高,波长由长到短

4.电磁波的发射、传输、接收

(1)采用开放电路及调制技术向外发射高频信号,调制有调频和调幅两种方式。

(2)电磁波的传输:卫星传输、光缆传输、电缆传输。

(3)电磁波的接收:调谐获取信号、检波(又称解调)让信号还原。

5.传感器

(1)作用:传感器的作用是将感受到的非电学量如力、热、光、声、化学、生物等量转换成便于测量的电学量或信号。

(2)常用传感器:双金属温度传感器、光敏电阻传感器、压力传感器等。

6.电磁波的应用和防止

(1)应用:电视机、收音机、摄像机、雷达、微波炉等。

(2)防止:电磁污染、信息犯罪等。

十一、物理学史:

1、伽利略最早研究自由落体运动,并获得极大成就。

2、托勒密提出了地心说,哥白尼提出了日心说,开普勒提出了行星运动定律。

3、牛顿提出了万有引力定律,卡文迪许最早测定了万有引力常量G。

4、富兰克林进行了著名的风筝实验,发现天电和摩擦产生的电是一样的。

5、伏打于1800年春发明了能够提供持续电流的“电堆”——最早的直流电源。

6、以美国发明家爱迪生和英国化学家斯旺为代表的一批发明家,发明和改进了电灯。

7、1820年,丹麦物理学家奥斯特用实验最早发现了电流的磁效应。

8、英国物理学家法拉第经过10年的艰苦探索,终于在1831年发现了电磁感应现象。

9、英国物理学家麦克斯韦建立了完整的电磁场理论并预言电磁波的存在,德国物理学家赫兹用实验证实了电磁波的存在。

10、我国的沈括最早发现了地磁偏角。地理的南北极是地磁的北南极

十二、物理主要基本概念、规律:

1、参考系:为研究物体运动假定不动的物体;又名参照物;参照物不一定静止

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;是一理想化模型

3、位移:从起点到终点的有向线段是矢量;路程:物体实际运动轨迹的长度,是标量

4、位移—时间图象:匀速直线运动的位移图像是一条倾斜直线;夹角的正切值表示速度

5、速度是表示质点运动快慢的物理量;平均速度与位移、时间间隔相对应);瞬时速度与位置、时刻相对应);瞬时速率(简称速率)即瞬时速度的大小,是标量。

6、速度—时间图象:匀速直线运动的速度图像是一条与横轴平行的直线匀变速直线运动的速度图像是一条倾斜直线;夹角的正切值表示加速度速度图象与时间轴所围的面积表示物体运动的位移

7、加速度:是描述物体速度变化快慢的物理量。加速度的大小与物体速度大小、速度改变量的大小无关;匀变速直线运动的加速度不随时间改变

8、在空气中,影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关

9、实验:打点计时器(计时仪器)的应用

(1)电磁打点计时器用10V以下的交流电源,频率为50Hz,周期为0.02s

(2)电火花打点计时器用220V的交流电源,频率也为50Hz,周期为0.02s

10、力是物体间的相互作用;力不能离开施力物体和受力物体而独立存在

11、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力

12、自然界中存在四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用

13、重心是物体各部分受到重力的等效作用点,它跟物体的几何外形质量分布有关

14、产生弹力的条件:二物体接触、且有形变产生弹力的原因:施力物体发生形变产生弹力

15、产生摩擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势弹力与摩擦力的关系:有弹力不一定有摩擦力;但有摩擦力,二物间就一定有弹力

16、摩擦力可以是动力,也可以是阻力运动的物体可以受静摩擦力,静止的物体也可以受滑动摩擦力摩擦力的方向:和物体相对运动(或相对运动趋势)方向相反

17、合力与分力的作用效果相同;合力与分力之间遵守平行四边形定则

18、物体处于平衡状态(静止、匀速直线运动状态)的条件物体所受合外力等于零(即F0)。

19、牛顿第一定律(惯性定律的理解:物体的运动并不需要力来维持力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)力是产生加速度的原因

20、一切物体都有惯性惯性的大小由物体的质量唯一决定

21、牛顿第二定律的应用:物体受力情况 ? 牛顿第二定律 ? a ? 运动学公式 ? 物体运动情况

22、牛顿第三定律物体间的作用力和反作用总是等大、反向、作用在同一条直线上的

23、力学单位:单位制是由基本单位和导出单位组成的一系列完整的单位体制。

24、力和物体沿力的方向的位移的乘积。功率:表示物体做功快慢的物理量。功、功率是标量

25、重力做的功只与物体初、末位置的高度有关,与物体运动的路径无关

26、实验:验证机械能守恒定律:实验原理:∣△Ek∣=∣△Ep∣       实验可不需要天平

27、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折。曲线运动中速度的方向在时刻改变,速度方向是曲线在这一点的切线方向

28、物体实际所做的运动是合运动合运动与分运动具有等时性

29、平抛运动:被水平抛出的物体只在重力作用下(不考虑空气阻力)所作的运动叫平抛运动。

30、线速度、向心力、向心加速度的方向时刻变化,但大小不变;速率、角速度、周期、频率不变

31、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上

32、地球卫星的最大环绕速度和最小发射速度均为7.9km/s

33、自然界中只存在两种电荷:用丝绸摩擦过的玻璃棒带正电荷,用毛皮摩擦过的硬橡胶棒带负电荷。同种电荷相互排斥,异种电荷相互吸引。用摩擦感应的方法都可以使物体带电。

34、电场强度既有大小,又有方向,是矢量。方向规定:跟正电荷在该点所受的电场力的方向相同

35、电流的概念:大量电荷的定向移动形成电流。电流产生条件导体两端存在电压

36、电流的方向:规定正电荷定向移动的方向为电流的方向与自由电子定向移动方向相反

37、磁体电流的周围都存在着磁场,磁场具有方向性,规定为小磁针静止时北极所指的方向

38、磁感线的疏密程度反映磁场的强弱磁感线上某点的切线方向表示该点的磁场方向

39、不论是直线电流的磁场还是环形电流的磁场,都可以用安培定则(右手螺旋定则)来判断方向。

40、产生感应电流的条件:闭合电路的磁通量发生变化

41、避雷针利用尖端放电原理来避雷。电热毯等利用电流的热效应来工作。电磁炉和金属探测器是利用涡流工作的。天线是发射和接收无线电波的必要设备。微波炉利用电磁波的能量来加热食物。

高中物理会考公式概念总结

一、直线运动

1、匀变速直线运动:

(1)平均速度   (定义式) 平均速度的方向即为运动方向 

       -平均速度 国际单位:米每秒m/s  常用单位:千米每时 km/h  换算关系 1m/s=3.6km/h    

(2)加速度     加速度描述速度变化的快慢,也叫速度的变化率

         {以Vo为正方向,a与Vo同向(做加速运动)a>0;反向(做减速运动)则a<0}
注:主要物理量及单位:初速度():m/s;     加速度(a):m/s2;     末速度():m/s;

         时间(t):秒(s);     位移(x):米(m);     路程(s):米(m);    

   三个基本物理量:长度   质量   时间  对应三个基本单位:m  kg  s

(3)  基本规律:  速度公式      位移公式   
几个重要推论:

  (1) 

              (初速度,末速度  匀加速直线运动:a为正值,匀减速直线运动(比如刹车):a为负值,)

  (2)  A B段中间时刻的即时速度:           *(3)   AB段位移中点的即时速度:

                           

注意 都是在什么条件下用比较好?(在什么条件不知或不需要知道或者也用不到时,该用哪个公式?)

(5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:         (a一匀变速直线运动的加速度,T一每个时间间隔的时间)            

                                         (用来求纸带问题中的加速度,注意单位的换算)

(6)自由落体:

                ①初速度Vo=0        ②末速度    ③下落高度(从Vo位置向下计算)
                ④推论      全程平均速度
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

二、相互作用:

1、重力G=mg

 (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,重心不一定在物体上,适用于地球表面附近)

2、弹力,胡克定律:(x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关)

3、求 两个共点力的合力:

   (1) 力的合成和分解都遵从平行四边行定则。               

   (2) 两个力的合力范围:  ú F1-F2 ú£ F£ F1 +F2                   

   (3) 合力可以大于分力、也可以小于分力、也可以等于分力。

  (4)求三个力的合力方法,先求出两个力的合力范围,看第三个力在不在这个范围内,如果在,则最小值可以取到0,最大值是三个力的和

4、物体平衡条件:静止或匀速直线运动的物体,所受合外力为零

                    或  

5、摩擦力的公式:

(1) 滑动摩擦力:  

说明:a、为接触面间的弹力,即支持力,可以大于G;也可以等于G;也可以小于G

b、m为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.

(2) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.(只要不动,推力越大,静摩擦力越大)

    大小范围:  O£ £   (为最大静摩擦力,与正压力有关)

说明:a、摩擦力方向可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

      b、摩擦力可以作正功,也可以作负功,还可以不作功。

    c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

      d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

三、牛顿运动定律:

1、牛顿第一定律:物体喜欢保持原来运动状态不变,即所有物体都具有惯性,这个性质称之为惯性。

                力是改变物体运动状态的原因,惯性是维持物体运动状态的原因

☆2、 牛顿第二定律:      或者   (1)矢量性  (2)瞬时性   (3)独立性  

                 (建立直角坐标系之后,x方向上的合力即为物体受到的合力)

2、牛顿第三定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,大小相等,叫做作用力与反作用力}

3、共点力的平衡:F=0

4、超重现象:     失重现象:      (无论失重、超重,物体重力都保持不变)

  电梯加速上升或减速下降,人超重     电梯减速上升或加速下降,人失重  

5、国际单位制中的力学基本单位:时间(t)s,长度(l)m,质量(m)kg

四、机械能及其守恒定律:

1、功 :                   (适用于恒力的功的计算){W:功(J),F:恒力(N),l:位移(m),:F、l间的夹角}

(1) 理解正功、零功、负功的含义

(2) 功是能量转化的量度: ① 合外力的功-----量度-----动能的变化

                        ② 重力的功 ------量度------重力势能的变化

                        ③ 电场力的功-----量度------电势能的变化

2、功率:

         (在t时间内力对物体做功的平均功率)

   (为平均速度)

瞬时功率:        (为瞬时速度)

注:汽车以恒定功率启动、以恒定加速度启动:汽车最大行驶速度(,f指阻力)

3、动能和势能: 动能:    { Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

重力势能:   (与零势能面的选择有关,h:竖直高度(m)(从零势能面起))

重力做功:Wab=mghab  只看初末位置高度差{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

☆4、动能定理:外力对物体做功的代数和等于物体动能的变化量。

     ☆☆                        {W:外力对物体做的总功,也是各力做功的代数和即

5、 机械能守恒定律:机械能 = 动能 + 重力势能 + 弹性势能

     条件:系统只有内部的重力或弹力做功(并不是说不受其他力)。只是动能和势能之间的转化}

     公式:  或者   减 =

五:曲线运动  

1、平抛运动:水平方向为匀速直线运动:   

竖直方向为自由落体运动:     

运动时间:   (取决于下落高度h,与初速度无关)

水平射程:             (取决于初速度Vo和下落高度h)

             秒末速度(合速度) :

秒末位移(总位移):

合速度方向与水平夹角β:tanβ=

合位移方向与水平夹角α:

2、匀速圆周运动:线速度:   

                 角速度:                                                                                                               =2πf=2πn        单位:rad/s  

                  向心加速度:

                  向心力:  

3、平抛运动是匀变速曲线运动,加速度始终不变,为g

    匀速圆周运动:匀速圆周运动是非匀变速曲线运动。


注:主要物理量及单位:弧长():米(m);   角度():弧度(rad);   频率(f):赫兹(Hz);

周期(T):秒(s);      转速(n):r/s;      半径(r):米(m);      线速度(V):m/s;

角速度(ω):rad/s;        向心加速度:m/s2

⑦同轴转动,各点角速度相等。线速度与半径成正比

  用皮带(无滑)传动的皮带轮,轮缘上各点的线速度大小相等。

六、万有引力与航天:

1、开普勒第三定律:r 3/T2=K {r:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2、万有引力定律:                       (G=6.67×10-11N?m2/kg2,万有引力方向在它们的连线上)

3、地球上的重力和重力加速度:;{R:地球半径(m),M:地球质量(kg)}

4、卫星绕行速度、角速度、周期:

1.加速度与轨道半径的关系:

2.线速度与轨道半径的关系:由

3.角速度与轨道半径的关系:

    4.周期与轨道半径的关系:由        {M:中心天体质量}

若星体在中心天体表面附近做圆周运动,上述公式中的轨道半径r为中心天体的半径R

5、天体质量M的估算:

6、第一(二、三)宇宙速度:;V2=11.2km/s;V3=16.7km/s

7、地球同步卫星:只能运行于赤道上空,运行周期和地球自转周期相同T=24h。

8、变轨问题:卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(类似于从远日点到近日点)

七、电场·电流:

1、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体所带电荷量等于元电荷的整数倍

2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,是作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3、电场强度:E=F/q(定义式){E:电场强度(N/C),是矢量,由本身决定;q:试探电荷的电量(C)}

4、电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

5、电容:C=Q/U(定义式){C:电容(F),由本身决定;Q:电量(C),U:电压(两极板电势差)(V)}

6、电容单位换算:1F(法拉)=106μF(微法)=1012PF(皮法)

7、电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大。

8、电子伏(eV)是能量的单位,1eV=1.60×10-19J。

9、电流:I=Q/t{I:电流(A),q:在时间t内通过导体横截面的电量(C),t:(s)}
10、欧姆定律:I=U/R{I:导体电流(A),U:导体两端电压(V),R:导体电阻(Ω)}

11、电流单位换算:1A(安培)=103mA(毫安)=106μA(微安)

12、电功率:P=UI     热功率:P=I2R{U:电压(V),I:电流(A),R:导体的电阻值(Ω)}

13、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

八、磁场:(磁场对通电导线有安培力的作用;磁场对运动电荷有洛伦兹力的作用)

1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:特斯拉(T),1T=1N/A?m

2、安培力:F=BIL(注:I⊥B){B:磁感应强度(T),F:安培力(N),I:电流(A),L:导线长度(m)}

3、洛仑兹力:F=qVB(注V⊥B){f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4、安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负

  左手定则判断安培力和洛伦兹力  右手定则判断电流或磁场方向  ————左力右电磁

九、电磁感应:

1、法拉第电磁感应定律:{E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}   

2、理想变压器原、副线圈中电压、功率关系:U1/U2=n1/n2     P=P   (只变交流,不变直流

3、有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值

十、电磁波及其应用:(电磁波谱:由无线电波、红外线、可见光、紫外线、X射线、γ射线组成

1、麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场

2、电磁波在真空中传播的速度:c=3.00×108m/s,λ=c/f{λ:电磁波的波长(m),f:电磁波频率}

十一、物理学史:

1、伽利略最早研究自由落体运动,并获得极大成就。

2、托勒密提出了地心说哥白尼提出了日心说开普勒提出了行星运动定律

3、牛顿提出了万有引力定律,卡文迪许最早测定了万有引力常量G

4、富兰克林进行了著名的风筝实验,发现天电和摩擦产生的电是一样的。

5、伏打于1800年春发明了能够提供持续电流的“电堆”——最早的直流电源。

6、以美国发明家爱迪生和英国化学家斯旺为代表的一批发明家,发明和改进了电灯。

7、1820年,丹麦物理学家奥斯特用实验最早发现了电流的磁效应

8、英国物理学家法拉第在1831年发现了电磁感应现象。

9、英国物理学家麦克斯韦建立了完整的电磁场理论并预言电磁波的存在,德国物理学家赫兹用实验证实了电磁波的存在。

10、我国的沈括最早发现了地磁偏角。地理的南北极是地磁的北南极

十二、物理主要基本概念、规律:

1、参考系:为研究物体运动假定不动的物体;又名参照物;参照物不一定静止,只是假定静止不动

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;是理想化模型。研究运动轨迹时物体可以看做质点

3、位移:从起点到终点的有向线段是矢量(有方向的量,还有速度v,加速度a,力F);  、

   路程:物体实际运动轨迹的长度,是标量(没有方向的量,还有速率,质量m,时间t,功W)

4、位移—时间(x-t)图象:匀速直线运动的位移图像是一条倾斜直线;夹角的正切值表示速度

5、速度是表示质点运动快慢的物理量;平均速度与位移、时间间隔相对应);瞬时速度与位置、时刻相对应);瞬时速率(简称速率)即瞬时速度的大小,是标量。

6、速度—时间图象(v-t):匀速直线运动的速度图像是一条与横轴平行的直线

   匀变速(包括匀加速和匀减速)直线运动的速度图像是一条倾斜直线

   夹角的正切值表示加速度;(也就是说斜率。直线的倾斜程度,越陡斜率越大)

    速度图象与时间轴所围的面积表示物体运动的位移

7、加速度:是描述物体速度变化快慢的物理量。加速度大,说明速度变化快

   加速度的大小与物体速度大小、速度改变量的大小无关

   匀变速直线运动的加速度不随时间改变,是恒量。(比如平抛这个典型的匀变速曲线运动,加速度始终是g)

8、在空气中,影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关

   (如果忽略空气阻力,则是自由落体运动,落地时间取决于初始高度)

9、实验:打点计时器(计时仪器)的应用

(1)电磁打点计时器用6V的交流电源,频率为50Hz,周期为0.02s

(2)电火花打点计时器用220V的交流电源,频率也为50Hz,周期为0.02s

10、力是物体间的相互作用;力不能离开施力物体和受力物体而独立存在。力改变物体的运动状态

11、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力

12、自然界中存在四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用

13、重心是物体各部分受到重力的等效作用点,它跟物体的几何外形质量分布有关。不一定在物体上

14、产生弹力的条件:两物体接触、且有形变产生弹力的原因:施力物体发生形变产生弹力

15、产生摩擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势

弹力与摩擦力的关系:有弹力不一定有摩擦力;但有摩擦力,二物间就一定有弹力

16、摩擦力可以是动力,也可以是阻力

运动的物体可以受静摩擦力,静止的物体也可以受滑动摩擦力

摩擦力的方向:和物体相对运动(或相对运动趋势)方向相反

17、合力与分力的作用效果相同;合力与分力之间遵守平行四边形定则

18、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零(即F=0)。

19、牛顿第一定律(惯性定律)的理解:物体的运动并不需要力来维持力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)力是产生加速度的原因

20、一切物体都有惯性惯性的大小只由物体的质量决定

21、牛顿第二定律的应用:根据物体受力情况找出加速度a,再根据运动学公式判断物体运动情况

22、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的。(但不在同一个物体上)

23、力学单位:单位制是由基本单位和导出单位组成的一系列完整的单位体制。

24、功:力和物体沿力的方向的位移的乘积。功率:表示物体做功快慢的物理量。功、功率是标量

25、重力做的功只与物体初、末位置的高度有关,与物体运动的路径无关

26、实验:验证机械能守恒定律:实验原理:∣△Ek∣=∣△Ep∣       实验不需要天平也不需要秒表

27、质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上

轨迹向其受力方向偏折。曲线运动中速度的方向在时刻改变,速度方向是曲线在这一点的切线方向

28、物体实际所做的运动是合运动合运动与分运动具有等时性

29、平抛运动:被水平抛出的物体只在重力作用下(不考虑空气阻力)所作的运动叫平抛运动。

30、匀速圆周运动线速度、向心力、向心加速度的方向时刻变化,但大小不变;速率、角速度、周期、频率不变

31、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上

32、地球卫星的最大环绕速度和最小发射速度均为7.9km/s

33、自然界中只存在两种电荷:用丝绸摩擦过的玻璃棒带正电荷,用毛皮摩擦过的硬橡胶棒带负电荷。同种电荷相互排斥,异种电荷相互吸引。用摩擦感应的方法都可以使物体带电。

34、电场强度既有大小,又有方向,是矢量。方向规定:跟正电荷在该点所受的电场力的方向相同

35、电流的概念:大量电荷的定向移动形成电流。电流产生条件:导体两端存在电压

36、电流的方向:规定正电荷定向移动的方向为电流的方向与自由电子定向移动方向相反

37、磁体电流的周围都存在着磁场,磁场具有方向性,规定为小磁针静止时北极所指的方向

38、磁感线的疏密程度反映磁场的强弱磁感线上某点的切线方向表示该点的磁场方向

39、不论是直线电流的磁场还是环形电流的磁场,都可以用安培定则(右手螺旋定则)来判断方向。

40、产生感应电流的条件:闭合电路的磁通量发生变化

41、避雷针利用尖端放电原理来避雷。电热毯等利用电流的热效应来工作。电磁炉和金属探测器是利用涡流工作的。天线是发射和接收无线电波的必要设备。微波炉利用电磁波的能量来加热食物。

42、马拉车与车拉马的力是一对相互作用力,大小相等,方向相反,作用在一条直线上,不能相互抵消。

43、自由落体运动是只受重力,自由释放做的运动,是典型的匀变速直线运动

44、加速度大小 与速度大小没有关系

45、匀速圆周运动各物理量,大小都不变,有方向的方向都改变,除了角速度

46、平抛运动的落地时间由高度决定,高度相同,不管初速度多大,落地时间相同

相关推荐