高中数学人教版必修4知识点总结

高中数学必修4知识点

2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第一象限角的集合为

第二象限角的集合为

第三象限角的集合为

第四象限角的集合为

终边在轴上的角的集合为

终边在轴上的角的集合为

终边在坐标轴上的角的集合为

3、与角终边相同的角的集合为

4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.

5、长度等于半径长的弧所对的圆心角叫做弧度.

6、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是

7、弧度制与角度制的换算公式:

8、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则

9、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则

10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.

11、三角函数线:

12、同角三角函数的基本关系:

13、三角函数的诱导公式:

口诀:函数名称不变,符号看象限.

口诀:正弦与余弦互换,符号看象限.

14、函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数

的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

函数的性质:

①振幅:;②周期:;③频率:;④相位:;⑤初相:

函数,当时,取得最小值为 ;当时,取得最大值为,则

15、正弦函数、余弦函数和正切函数的图象与性质:

16、向量:既有大小,又有方向的量.     数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.       单位向量:长度等于个单位的向量.

平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量.

17、向量加法运算:

⑴三角形法则的特点:首尾相连.

⑵平行四边形法则的特点:共起点.

⑶三角形不等式:

⑷运算性质:①交换律:;②结合律:;③

⑸坐标运算:设,则

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

⑵坐标运算:设,则

两点的坐标分别为,则

19、向量数乘运算:

⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作

②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,

⑵运算律:①;②;③

⑶坐标运算:设,则

20、向量共线定理:向量共线,当且仅当有唯一一个实数,使

,其中,则当且仅当时,向量共线.

21、平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使.(不共线的向量作为这一平面内所有向量的一组基底)

22、分点坐标公式:设点是线段上的一点,的坐标分别是,当时,点的坐标是

23、平面向量的数量积:

.零向量与任一向量的数量积为

⑵性质:设都是非零向量,则①.②当同向时,;当反向时,.③

⑶运算律:①;②;③

⑷坐标运算:设两个非零向量,则

,则,或.设,则

都是非零向量,的夹角,则

24、两角和与差的正弦、余弦和正切公式:

;     ⑵

;     ⑷

);

).

25、二倍角的正弦、余弦和正切公式:

).

26、,其中

 

第二篇:高中数学人教版必修一知识点总结归纳

第一章 集合与函数概念

一:集合的含义与表示

1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:

(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

3、集合的表示:{?}

(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c??}

b、描述法:

①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x?R| x-3>2} ,{x| x-3>2}

②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:

(1)有限集:含有有限个元素的集合

(2)无限集:含有无限个元素的集合

(3)空集:不含任何元素的集合

5、元素与集合的关系:

(1)元素在集合里,则元素属于集合,即:a?A

(2)元素不在集合里,则元素不属于集合,即:a¢A

? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+

整数集Z

有理数集Q

实数集R

6、集合间的基本关系

(1).“包含”关系(1)—子集

定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合

A是集合B的子集。记作:A?B(或B?A)

注意:A?B有两种可能(1)A是B的一部分;

(2)A与B是同一集合。

?B或B??A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?

(2).“包含”关系(2)—真子集

如果集合A?B,但存在元素x?B且x¢A,则集合A是集合B的真子集

如果A?B,且A? B那就说集合A是集合B的真子集,记作A

(3).“相等”关系:A=B

“元素相同则两集合相等”

如果A?B 同时 B?A 那么A=B

(4). 不含任何元素的集合叫做空集,记为Φ

第 1 页 B(或BA)读作A真含与B

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 (5)集合的性质

① 任何一个集合是它本身的子集。A?A ②如果 A?B, B?C ,那么 A?C

③如果AB且BC,那么AC

④有n个元素的集合,含有2n个子集,2n-1个真子集 7

高中数学人教版必修一知识点总结归纳

1. 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任

意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.

(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

2. 函数的三要素:定义域、值域、对应法则

3. 函数的表示方法: (1)解析法:明确函数的定义域

(2)图像法:确定函数图像是否连线,函数的图像可以是连续的曲

线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标

的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

第 2 页

(2) 画法

A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:

1)左加右减——————只对x

2)上减下加——————只对y

3)函数y=f(x) 关于X轴对称得函数y=-f(x)

4)函数y=f(x) 关于Y轴对称得函数y=f(-x)

5)函数y=f(x) 关于原点对称得函数y=-f(-x)

6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得

函数y=| f(x)|

7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

三、函数的基本性质

1、函数解析式子的求法

(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它

们之间的对应法则,二是要求出函数的定义域.

(2)、求函数的解析式的主要方法有:

1)代入法:

2)待定系数法:

3)换元法:

4)拼凑法:

2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义

的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两

点必须同时具备)

4、区间的概念:

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示

5、值域 (先考虑其定义域)

(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;

(2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X

的范围类似求Y的范围。

(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。

(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

第 3 页

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

(4)常用的分段函数有取整函数、符号函数、含绝对值的函数

7.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)?B(象)”

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,

而映射不一定的函数

8、函数的单调性(局部性质)及最值

(1)、增减函数

(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,

x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间称为y=f(x)

的单调增区间.

(2)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就

说f(x)在这个区间上是减函数.区间称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种

(2)、 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3)、函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x,x∈D,且x<x; ○

2 作差f(x)-f(x); ○

3 变形(通常是因式分解和配方); ○

4 定号(即判断差f(x)-f(x)的正负); ○

5 下结论(指出函数f(x)在给定的区间D上的单调性). ○12121212

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 9:函数的奇偶性(整体性质)

(1)、偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)、奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇

第 4 页

函数.

(3)、具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;

b、确定f(-x)与f(x)的关系;

c、作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

(4)利用奇偶函数的四则运算以及复合函数的奇偶性

a、在公共定义域内,偶函数的加减乘除仍为偶函数;

奇函数的加减仍为奇函数;

奇数个奇函数的乘除认为奇函数;

偶数个奇函数的乘除为偶函数;

一奇一偶的乘积是奇函数;

a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

(1)再根据定义判定;

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定 .

10、函数最值及性质的应用

(1)、函数的最值

a 利用二次函数的性质(配方法)求函数的最大(小)值

b 利用图象求函数的最大(小)值

c 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

(2)、函数的奇偶性与单调性

奇函数在关于原点对称的区间上有相同的单调性;

偶函数在关于原点对称的区间上有相反的单调性。

(3)、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商

法是与1作比较。

(4)、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。

(5)、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判

断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。

第二章 基本初等函数

一、指数函数

(一)指数

第 5 页

1、 指数与指数幂的运算:

复习初中整数指数幂的运算性质:

am*an=am+n

(am)n=amn

(a*b)n=anbn

2、根式的概念:一般地,若xn?a,那么x叫做a的n次方根,其中n>1,且n∈N*.

当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。此时,a的n次方根用符号 表示。

当n为偶数时,正数的n次方根有两个,这两个数互为相反数。此时正数a的正的n次方根用

符号 表示,负的n的次方根用符号 表示。正的n次方根与负的n次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作0?0。

?a(a?0)当n是奇数时,an?a,当n是偶数时,an?|a|?? ??a(a?0)

式子a 叫做根式,这里n叫做根指数,a叫做被开方数。

3、 分数指数幂

正数的分数指数幂的

mm?11m*(a?0,m,n?N*,n?1) an?a(a?0,m,n?N,n?1),an?m?am

na

0的正分数指数幂等于0,0的负分数指数幂没有意义

4、 有理数指数米的运算性质

rrr?saa?a(1)· (a?0,r,s?R);

rsrs(a)?a(2)

rrs(ab)?aa (3)(a?0,r,s?R); (a?0,r,s?R).

5、无理数指数幂

一般的,无理数指数幂aa(a>0,a是无理数)是一个确定的实数。有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点

1、指数函数的概念:一般地,函数y?ax(a?0,且a?1)叫做指数函数,其中x是自变量,函数的

定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?

2

高中数学人教版必修一知识点总结归纳

第 6 页

(1)在[a,b]上,值域是[f(a),f(b)]或[f(b),f(a)];

(2)若x?0,则f(x)?1;f(x)取遍所有正数当且仅当x?R;

(3)对于指数函数f(x)?ax(a?0且a?1),总有f(1)?a;

(4)当a>1时,若X1<X2 ,则有f(X1)<f(X2)。

二、对数函数

(一)对数

1.对数的概念:一般地,如果ax?N(a?0,a?1),那么数x叫做以记作:x?logaN.a为底..N的对数,

(a— 底数,N— 真数,logaN— 对数式)

说明:○1 注意底数的限制a?0,且a?1;

2 a?N?logN?x; ○

3 注意对数的书写格式:log○xa

aN

两个重要对数:

1 常用对数:以10为底的对数lgN; ○

2 自然对数:以无理数e?2.71828?为底的对数的对数lnN. ○

(二)对数的运算性质

如果a?0,且a?1,M?0,N?0,那么:

1 log(M·N)?logM+logN; ○

M?logM-logN; 2 log○Naaaaaa

3 log○aMn?nlogaM (n?R). 注意:换底公式

logcb (a?0,且a?1;c?0,且c?1;b?0). logab?logca

利用换底公式推导下面的结论

1n(1)logabn?logab;(2)logab?. mlogbam

(二)对数函数

1、对数函数的概念:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义

域是(0,+∞).

第 7 页

高中数学人教版必修一知识点总结归纳

注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:y?2log2x,y?log5都不是对数函数,而只能称其为对数型函数. 2 对数函数对底数的限制:(a?0,且a?1). ○

2

高中数学人教版必修一知识点总结归纳

x 5

三、幂函数

1、幂函数定义:一般地,形如y?x?(a?R)的函数称为幂函数,其中?为常数. 2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)??0时,幂函数的图象通过原点,并且在区间[0,??)上是增函数.特别地,当??1时,幂函数的图象下凸;当0???1时,幂函数的图象上凸;

(3)??0时,幂函数的图象在区间(0,??)上是减函数.在第一象限内,当x从右边趋向原点时,

图象在y轴右方无限地逼近y轴正半轴,当x趋于??时,图象在x轴上方无限地逼近x轴正半轴.

第三章 函数的应用

方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点. 3、函数零点的求法:

(1)(代数法)求方程 的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

第 8 页

相关推荐