简谈钟表的发展与原理

                            简谈钟表的发展与原理

                  

 作者:李淑娟   工作单位:陕师大  数学系 数学与应用数学专业

摘要:钟表经过一千多年的发展,逐渐向微电子技术与精密机械相结合的石英化发展,机械钟表由原动系、传动系、擒纵调速器、指针系和上条拨针系等部分组成。 机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。

关键词:发展史 原理 原动 传动 齿轮
  钟表是一种计时工具,在现代汉语中一般有两层含义,一是各类钟和表的总称,另一个是专指体积较大的表,尤指机械结构的有钟摆的表。 钟表技术是计时技术的一个重要发展阶段,是现代机械技术和计算机技术的技术源头之一。

  钟表分类大致如下:

有摆钟表 :是由阿拉伯工匠最早设计出来的。其工作原理是等速运动原理。

机械钟表 :机械钟表的动力系统是发条,计时单位是小时、分钟、秒,分别采用了12进位制和60进位制。

(一)钟表发展史

公元1300年以前,人类主要是利用天文现象和流动物质的连续运动来计时。例如,日晷是利用日影的方位计时;漏壶和沙漏是利用水流和沙流的流量计时。

  东汉张衡制造漏水转浑天仪,用齿轮系统把浑象和计时漏壶联结起来,漏壶滴水推动浑象均匀地旋转,一天刚好转一周,这是最早出现的机械钟。北宋元祜三年(1088)苏颂和韩公廉等创制水运仪象台,已运用了擒纵机构。

  1350年,意大利的丹蒂制造出第一台结构简单的机械打点塔钟,日差为15~30分钟,指示机构只有时针;1500~1510年,德国的亨莱思首先用钢发条代替重锤,创造了用冕状轮擒纵机构的小型机械钟;1582年前后,意大利的伽利略发明了重力摆;1657年,荷兰的惠更斯把重力摆引入机械钟,创立了摆钟。

  1660年英国的胡克发明游丝,并用后退式擒纵机构代替了冕状轮擒纵机构;1673年,惠更斯又将摆轮游丝组成的调速器应用在可携带的钟表上;1675年,英国的克莱门特用叉瓦装置制成最简单的锚式擒纵机构,这种机构一直沿用在简便摆锤式挂钟中。

  1695年,英国的汤姆平发明工字轮擒纵机构;1715年,英国的格雷厄姆又发明了静止式擒纵机构,弥补了后退式擒纵机构的不足,为发展精密机械钟表打下了基础;1765年,英国的马奇发明自由锚式擒纵机构,即现代叉瓦式擒纵机构的前身;1728~1759年,英国的哈里森制造出高精度的标准航海钟;1775~1780年,英国的阿诺德创造出精密表用擒纵机构。

18~19世纪,钟表制造业已逐步实现工业化生产,并达到相当高的水平。20世纪,随着电子工业的迅速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表、数字式石英电子钟表相继问世,钟表的日差已小于0.5秒,钟表进入了微电子技术与精密机械相结合的石英化新时期

图12

3图4

机械钟是图1所画的重锤式机械钟,这也是欧洲最早的一种依靠擒纵装置进行守时的计时器。图2画出了这种机械钟主要工作机构的简化图。这种钟以一个重锤提供驱动力,悬挂重锤的绳子缠绕在一根轴上,重锤下落,带动轴转动,并将转动传递给守时机构。守时机构包括一套擒纵装置和横摆,擒纵装置主要由棘轮和带棘爪的心轴组成,心轴上方与横摆相连。当棘轮在重锤的带动下转动,上方的轮齿推开心轴上部的棘爪,使心轴转过一个角度,而这样刚好又使心轴下部的棘爪转过来挡在下方轮齿的去路上,棘轮继续转动将它推开后,心轴就转回原来的位置,完成了一次摆动。心轴每摆动一次,棘轮都转过一个相同的角度,而这种摆动的频率通过连在心轴上的横摆得到控制,从而具有等时性(如同单摆的等时性一样,这种等时性是可以用经典力学证明的),这样,将棘轮的运动通过中轴传递给表盘上的指针,指针就可以匀速转动了。此外,由于横摆摆动的频率与横摆的转动惯量和棘轮施加给它的力量大小有关,而后者又最终由重锤所受的重力决定,不易调节,因此为方便对钟表运转速度进行调试,横摆两端的配重物被设计成可以移动的,向外移则横摆的转动惯量增大,钟速变慢,向内移则转动惯量减小,钟速变快。这种钟的缺点在于,重锤提供的驱动力在维持主要机械部分运转的同时,也是推动横摆摆动的唯一力量,而这个推力是与横摆的摆动频率相关的,当重锤提供的动力经过数重机械结构最终传递到横摆以后,其间的误差已经积累得非常大了。因此这种钟走得“很不准确”。伽利略发现单摆的等时性以后,建议研制利用单摆作为核心守时装置的计时器,这一提议在惠更斯手中得到实现。

图3即是惠更斯摆钟的基本结构。钟的机械动力仍由重锤提供,但擒纵器的摆动频率由单摆控制。一个与擒纵器心轴连在一起的L形杆伸向单摆,L形杆的杆头分叉,刚好卡住刚性的摆棍,单摆摆动时带动L形杆转动,从而把摆动的频率传递给擒纵器。摆钟的优越性在于,单摆的频率与推动它的初始力量无关,而只与重力和摆长有关,这样守时机构就真的不再受到动力机构的干扰了。之后,惠更斯又发明了一种游丝—摆轮装置。游丝是一个螺旋形的弹簧,连在摆轮上,当摆轮向一个方向转动,使游丝发生形变,产生一个力拉动摆轮回转,在转过平衡位置后,游丝再一次发生形变,又产生一个反向的力,重新把摆轮拉回来。这样就能维持一种能够周期性的震动,像横摆、单摆一样,用来控制擒纵器的频率。游丝—摆轮与单摆一样独立于动力机构,其频率不受其他机械部分影响,而利用游丝—摆轮制成的钟表相对于摆钟的优点主要在于不依靠重力,因此只要设计合理,那么其在移动中仍可准确走时,也就意味着相对更加便携。后来英国人哈里森发明的第一台能够精确运行的航海钟就采用这种机构的。

(二)机械表工作原理简谈

钟表的应用范围很广,成表品种甚多,可按振动原理、结构和用途特点分类。按振动原理可分为利用频率较低的机械振动的钟表,如摆钟、摆轮钟等;利用频率较高的电磁振荡和石英振荡的钟表,如同步电钟、石英钟表等;按结构特点可分为机械式的,如机械闹钟、自动、日历、双历、打簧等机械手表;电机械式的,如电摆钟、电摆轮钟表等;电子式的,如摆轮电子钟表、音叉电子钟表、指针式和数字显示式石英电子钟表 等。钟表主要有成表、表芯、成钟、钟芯等构成的。
   机械钟表有多种结构形式,但其工作原理基本相同,都是由原动系、传动系、擒纵调速器、指针系和上条拨针系等部分组成。

图一与图二分别是机械手表工作原理图与结构图。

图一

 图二

 机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。
  此外,还有一些附加机构,可增加钟表的功能,如自动上条机构、日历(双历)机构、闹时装置、月相指示和测量时段机构等。
  原动系是储存和传递工作能量的机构,通常由条盒轮、条盒盖、条轴、发条和发条外钩组成。发条在自由状态时是一个螺旋形或 S形的弹簧,它的内端有一个小孔,套在条轴的钩上。它的外端通过发条外钩,钩在条盒轮的内壁上。上条时,通过上条拨针系使条轴旋转将发条卷紧在条轴上。发条的弹性作用使条盒轮转动,从而驱动传动系。

 传动系是将原动系的能量传至擒纵调速器的一组传动齿轮,它是由二轮(中心轮)、三轮(过轮)、四轮(秒轮)和擒纵轮齿轴组成,其中 轮片是主动齿轮,齿轴是从动齿轮。钟表传动系的齿形绝大部分是根据理论摆线的原理,经过修正而制作的修正摆线齿形。
 擒纵调速器是由擒纵机构和振动系统两部分组成,它依靠振动系统的周期性震动,使擒纵机构保持精确和规律性的间歇运动,从而取得调速作用。叉瓦式擒纵机构是应用最广的一种擒纵机构。它由擒纵轮、擒纵叉、双圆盘和限位钉等组成。它的作用是把原动系的能量传递给振动系统,以便维持振动系统作等幅振动,并把振动系统的振动次数传递给指示机构,达到计量时间的目的。
   振动系统主要由摆轮、摆轴、游丝、活动外桩环、快慢针等组成。游丝的内外端分别固定在摆轴和摆夹板上;摆轮受外力偏离其平衡位置开始摆动时,游丝便被扭转而产生位能,称为恢复力矩。擒纵机构完成前述两动作的过程 ,振动系在游丝位能作用下,进行反方向摆动而完成另半个振动周期,这就是机械钟表在运转时擒纵调速器不断和重复循环工作的原理。
 上条拨针系的作用是上条和拨针。它由柄头、柄轴、 立轮、离合轮、离合杆、离合杆簧、拉档、压簧、拨针轮、跨轮、时轮、分轮、大钢轮、小钢轮、棘爪、棘爪簧等组成。
  上条和拨针都是通过柄头部件来实现的。上条时,立轮和离合轮处于啮合状态,当转动柄头时,离合轮带动立轮,立轮又经小钢轮和大钢轮,使条轴卷紧发条。棘爪则阻止大钢轮逆转。拨针时,拉出柄头,拉档在拉档轴上旋转并推动离合杆,使离合轮与立轮脱开,与拨针轮啮合。此时转动柄头便拨针轮通过跨轮带动时轮和分轮,达到校正时针和分针的目的。

附:
  钟表要求走时准确,稳定可靠。但一些内部因素和外界环境条件都会影响钟表的走时精度。内部因素包括各组成系统的结构设计、工作性能、选用材料、加工工艺和装配质量等。例如,发条力矩的稳定性,传动系工作的平稳性,擒纵调速器的准确性等都影响走时精度。
  外界环境条件包括温度、磁场、湿度、气压、震动、碰撞、使用位置等。例如,温度变化会引起钟表内润滑油和摆轮游丝性能的变化,从而引起走时性能的变化;环境的磁场强度大于60奥斯特时,会引起部分零件磁化而走慢;湿度大会引起部分零件氧化和腐蚀 等等。

小结:

 (1)钟表由水钟,日晷,漏壶钟发展到摆钟,小型机械钟,在对擒纵式机构的改造中增进机械表的准确度,直到走入微电子技术与精密机械相结合的石英化新时期,经历了一千多年的发展。机械化的引进是一大突破。

(2)机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。 此外,还有一些附加机构,可增加钟表的功能,如自动上条机构、日历(双历)机构、闹时装置、月相指示和测量时段机构等。

体会:机械原理课虽然课时量少,但老师通俗的讲解仍旧让我们收获不少,对常用机构都有了一定的了解,有能力进行一定的创新。

题目:简谈钟表的发展与原理

作者:李淑娟

班级:09级数学一班

学号:40905037

成绩:

任课老师:葛文杰

                            20##年4月22日

 

第二篇:钟表原理

机械钟表中,利用带簧(发条)恢复变形所放出的能量或利用重物下降的重力作能源,以机械振动系统为时间基准,实现计量时间和时段的机械机构。机械钟表机构有多种类型,但一般都由原动系、传动系、擒纵调速系、上条拨针系和指针系组成,工作原理基本相同(图1[机械钟表工作原

包括日历(或双历)机构,自动手表中还包括自动上条机构。

原动系 储存和传递工作能量的机构。分为重锤原动系和弹簧原动系两类。

重锤原动系 利用重锤的重力作能源。多用于简易挂钟(图2 [简易挂钟传动示

钟表原理

钟表原理

和落地摆钟。重锤原动系结构简单,力矩稳定,但当上升重锤时,传动系与原动系脱开,钟表机构停止工作。

弹簧原动系 利用卷成螺线形的带簧(发条)恢复变形所放出的能量作能源。带簧一端与轴连接,另一端与一个不动的零件或发条盒的壳体连接。弹簧原动系用作携带式钟表的能源,也用于摆钟上。弹簧原动系有带固定条盒式、不带条盒式和带活动条盒式等3种类型。 传动系 将原动系的能量传给擒纵调速系的一组传动齿轮。通常由一系列轮片和齿轴组成(图3[ 机械手

在主传动中轮片是主动齿轮,齿轴是从动齿轮。传动比按照以下公式进行计算:

i=Z/Z式中Z为主动齿轮齿数,Z为从动齿轮齿数。对于有秒针装置的钟表,其中心轮的轮片到秒轮的齿轴的传动比必须等于60。钟表传动系的齿形绝大多数是专门设计的(见钟表齿形)。

传动系可按“二轮”(时轮和分轮)在表机芯的平面配置分为两类:①中心二轮式,二轮在表机芯的中央。它又包括直接传动式、秒簧式、短秒针和无秒针式、双三轮式。②偏二轮式,二轮不在表机芯中央。它又包括头轮传出式、二轮传出式、三轮传出式。

直接传动式是经常采用的传动系之一(图3[ 机械手表传动示

在这种传动方式中,分轮上部有一凹槽,分轮依靠摩擦与中心轮管相配合;走针机构的运动由中心轮来带动。

擒纵调速系 由擒纵机构和振动系统构成。按振动系统的特点可分为两类:①有固有振动周期擒纵调速系。它具有可以独立进行振动的、有稳定周期的振动系统。手表、闹钟中的走时系统的擒纵调速系属于此类。②无固有振动周期擒纵调速系(图4 [

钟表原理

无固有振动周期擒纵

调速

它没有能够独立进行振动的振动系统。这种调速系中的所谓振动系统的往复振动,完全依靠擒纵机构的往复运动。机械闹钟中的闹时系统的擒纵调速系属于此类。这种调速系精度要求不高,结构简单,工作可靠,抗外界干扰能力强,在机械式定时器和钟表引信中大量采用。 擒纵机构 联系传动系和振动系统的一种机构。其作用是把原动系的能量传递给振动系统,以维持振动系统的等幅振动;并把振动系统的振动次数传给指针机构,达到计量时间之目的。擒纵机构种类很多,按其与振动系统联系的程度可分为两类。①非自由式擒纵机构:擒纵机构和振动系统经常保持运动上的联系。它包括直进式、后退式和工字轮式擒纵机构等。②自由式擒纵机构:只有在释放和传冲阶段,擒纵机构和振动系统才保持运动上的联系,其余阶段振动系统处于自由运动状态。它包括有销钉式、叉瓦式和天文钟式擒纵机构等。

后退式擒纵机构(图5[后退式擒纵机构]):广泛用于低精度摆钟。它的叉瓦锁面和冲面是同一平面(工作面);进瓦的工作面是一圆柱面,其圆心与擒纵叉的转动中心不重合;出瓦的工作面是一平面。叉瓦和擒纵叉作成一体。传冲后,叉瓦工作面将迫使擒纵轮后退一个角度。

钟表原理

钟表原理

叉瓦式擒纵机构(图6[叉瓦式擒纵机构]应用最广的擒纵机构之一。工作时,擒纵轮由传动系取得能量,通过擒纵轮齿和叉瓦(进瓦或出瓦)的作用转变为冲量传送给擒纵叉;通过擒纵叉的叉口和双圆盘的冲击圆盘上的摆钉的相互作用,再将冲量传给振动系统。双圆盘的保险圆盘和叉头钉,摆钉和擒纵叉的叭口是保证机构正常工作的保险装置

销钉式擒纵机构(图7[销钉式擒纵机构]

与叉瓦式擒纵机构的不同之处是,在擒纵叉上用两根圆柱销钉代替叉瓦,冲量只沿擒纵轮齿冲面传递。这种擒纵机构结构简单,精度要求低,制造方便,多在闹钟和低精度表中采用,俗称粗马结构。

振动系统 作为时间基准的机构。振动系统的振动周期乘以被测过程内的振动次数,即为该过程经历的时间。机械钟表常用的振动系统有摆、扭转摆和摆轮游丝振动系统。

①摆:由摆锤、摆杆、挂摆装置和周期调节装置等组成。用于固定式钟中(图2 [简易挂钟传动

钟表原理

)。当摆锤在外力作用下偏离铅垂线(平衡位置)任一角度而放开后,在重力作用下,摆锤将绕支点作往复运动。振动过程是摆的动能和位能交替转换的过程。

②扭转摆:主要由摆盘和悬丝组成(图8[扭转摆])

钟表原理

钟表原理

。悬丝下端固定摆盘,上端固定在不动的

支点上。悬丝的截面可为矩形或圆形。扭转摆常与后退式擒纵机构或叉瓦式擒纵机构构成擒纵调速系。扭转摆有较长的振动周期(几秒~几十秒),多用于能量较节省而走时延续时间较长的固定式钟。

③摆轮游丝振动系统(图9[ 摆轮游丝振动系

):游丝的内外端分别固定在摆轴和摆夹板上。摆轮受外力作用偏离其平衡位置开始摆动时,游丝就被扭转而产生位能,通常称为恢复力矩。该力矩促使摆轮向其平衡位置运动。

上条拨针系 卷紧原动系中的发条和拨动时针、分针以校正钟表所指示时间的机构(图10[上条拨针动作

钟表原理

上条时,立轮和离合轮处于啮合状态。拨针时,离合轮和立轮脱开而与拨针轮啮合。 参考书目 天津大学精仪系计时教研室编《机械计时仪器》:,天津科学技术出版社,天津,1980。 陈昌山编著:《手表结构原理》,上海科学技术出版社,上海,1980。

钟表原理