文档初一上册数学小论文

来源:m.fanwen118.com时间:2022.8.14

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、20xx年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、20xx年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

生活中的数学

有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数”

取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。

有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。

数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入

某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!

“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。

美妙的轴对称

如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。

如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?

再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。

轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。

数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。

不过估计现在也没有用了。那么少的分要写那么多字。


第二篇:文档八年级上册数学论文 1300字

现在,我们都习以为常地使用根号,并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢?

古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。

与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。

直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求某数的平方根,就写作 ,如果想求某数的立方根,则写作 。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。

现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3^√的使用,比如25的立方根用“3^√”表示。以后,诸如“3^√”等等形式的根号渐渐使用开来。

由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也不是从天上掉下来的。

平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。(正数a的正的平方根,叫做a的算术平方根。)有时我们说的平方根指算术平方根。一个正数如果有平方根,那么必定有两个,它们互为相反数。如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。正数a的平方根可以记作“±√a”,a称为被开方数。正整数的平方根通常是无理数。

负数有平方根吗?其实,没有一个数的平方根是小于零的,所以负数没有平方根(没有意义)。 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。立方根,类似于平方根的表示方法,读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0)

求一个数a的立方根的运算叫做开立方。

所有实数都有且只有一个立方根。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

在现实生活中,我们可以通过平方(立方)运算来寻求平方根(立方根),并可以用来验证开平方(开立方)的正确性。

更多类似范文
┣ 初一数学月考小结 4200字
┣ 初一数学兴趣小组工作总结 800字
┣ 初一数学兴趣小组工作总结 600字
┣ 初一数学兴趣小组工作总结 600字
┣ 更多初一数学小论文范文
┗ 搜索类似范文