分类算法总结

分类算法

数据挖掘中有很多领域,分类就是其中之一,什么是分类, 
分类就是把一些新得数据项映射到给定类别的中的某一个类别,比如说当我们发表一篇文章的时候,就可以自动的把这篇文章划分到某一个文章类别,一般的过程是根据样本数据利用一定的分类算法得到分类规则,新的数据过来就依据该规则进行类别的划分。 
分类在数据挖掘中是一项非常重要的任务,有很多用途,比如说预测,即从历史的样本数据推算出未来数据的趋向,有一个比较著名的预测的例子就是大豆学习。再比如说分析用户行为,我们常称之为受众分析,通过这种分类,我们可以得知某一商品的用户群,对销售来说有很大的帮助。 
分类器的构造方法有统计方法,机器学习方法,神经网络方法等等。常见的统计方法有knn算法,基于事例的学习方法。机器学习方法包括决策树法和归纳法,上面讲到的受众分析可以使用决策树方法来实现。神经网络方法主要是bp算法,这个俺也不太了解。 
文本分类, 所谓的文本分类就是把文本进行归类,不同的文章根据文章的内容应该属于不同的类别,文本分类离不开分词,要将一个文本进行分类,首先需要对该文本进行分词,利用分词之后的的项向量作为计算因子,再使用一定的算法和样本中的词汇进行计算,从而可以得出正确的分类结果。在这个例子中,我将使用庖丁分词器对文本进行分词。

目前看到的比较全面的分类算法,总结的还不错. 
2.4.1 主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。 
(1)决策树 
决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 
主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。 
(2)贝叶斯 
贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(Tree Augmented Na?ve Bayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。 
(3)人工神经网络 
人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(或称”神经元”,或”单元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。 
目前,神经网络已有上百种不同的模型,常见的有BP网络、径向基RBF网络、Hopfield网络、随机神经网络(Boltzmann机)、竞争神经网络(Hamming网络,自组织映射网络)等。但是当前的神经网络仍普遍存在收敛速度慢、计算量大、训练时间长和不可解释等缺点。 
(4)k-近邻 
k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。 
(5)支持向量机 
支持向量机(SVM,Support Vector Machine)是Vapnik根据统计学习理论提出的一种新的学习方法[43] ,它的最大特点是根据结构风险最小化准则,以最大化分类间隔构造最优分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。对于分类问题,支持向量机算法根据区域中的样本计算该区域的决策曲面,由此确定该区域中未知样本的类别。 
(6)基于关联规则的分类 
关联规则挖掘是数据挖掘中一个重要的研究领域。近年来,对于如何将关联规则挖掘用于分类问题,学者们进行了广泛的研究。关联分类方法挖掘形如condset→C的规则,其中condset是项(或属性-值对)的集合,而C是类标号,这种形式的规则称为类关联规则(class association rules,CARS)。关联分类方法一般由两步组成:第一步用关联规则挖掘算法从训练数据集中挖掘出所有满足指定支持度和置信度的类关联规则;第二步使用启发式方法从挖掘出的类关联规则中挑选出一组高质量的规则用于分类。属于关联分类的算法主要包括CBA[44] ,ADT[45] ,CMAR[46] 等。 
(7)集成学习(Ensemble Learning) 
实际应用的复杂性和数据的多样性往往使得单一的分类方法不够有效。因此,学者们对多种分类方法的融合即集成学习进行了广泛的研究。集成学习已成为国际机器学习界的研究热点,并被称为当前机器学习四个主要研究方向之一。 
集成学习是一种机器学习范式,它试图通过连续调用单个的学习算法,获得不同的基学习器,然后根据规则组合这些学习器来解决同一个问题,可以显著的提高学习系统的泛化能力。组合多个基学习器主要采用(加权)投票的方法,常见的算法有装袋[47] (Bagging),提升/推进[48, 49] (Boosting)等。 
有关分类器的集成学习见图2-5。集成学习由于采用了投票平均的方法组合多个分类器,所以有可能减少单个分类器的误差,获得对问题空间模型更加准确的表示,从而提高分类器的分类准确度。 
图2-5:分类器的集成学习 
以上简单介绍了各种主要的分类方法,应该说其都有各自不同的特点及优缺点。对于数据库负载的自动识别,应该选择哪种方法呢?用来比较和评估分类方法的标准[50] 主要有:(1)预测的准确率。模型正确地预测新样本的类标号的能力;(2)计算速度。包括构造模型以及使用模型进行分类的时间;(3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;(4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;(5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。 

最初的数据挖掘分类应用大多都是在这些方法及基于内存基础上所构造的算法。目前数据挖掘方法都要求具有基于外存以处理大规模数据集合能力且具有可扩展能力。下面对几种主要的分类方法做个简要介绍:

1)决策树

决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。

(2) KNN(K-Nearest Neighbor)

    KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

    KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

    该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种Reverse KNN法,能降低KNN算法的计算复杂度,提高分类的效率。

    该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

 (3) SVM

    SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。

    支持向量机算法的目的在于寻找一个超平面H(d),该超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的分类结果。

(4) VSM

    VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。

    在实际应用中,VSM法一般事先依据语料库中的训练样本和分类体系建立类别向量空间。当需要对一篇待分样本进行分类的时候,只需要计算待分样本和每一个类别向量的相似度即内积,然后选取相似度最大的类别作为该待分样本所对应的类别。

    由于VSM法中需要事先计算类别的空间向量,而该空间向量的建立又很大程度的依赖于该类别向量中所包含的特征项。根据研究发现,类别中所包含的非零特征项越多,其包含的每个特征项对于类别的表达能力越弱。因此,VSM法相对其他分类方法而言,更适合于专业文献的分类。

(5) Bayes

    Bayes法是一种在已知先验概率与类条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。

    设训练样本集分为M类,记为C={c1,…,ci,…cM},每类的先验概率为P(ci),i=1,2,…,M。当样本集非常大时,可以认为P(ci)=ci类样本数/总样本数。对于一个待分样本X,其归于cj类的类条件概率是P(X/ci),则根据Bayes定理,可得到cj类的后验概率P(ci/X):

    P(ci/x)=P(x/ci)?P(ci)/P(x)(1)

    若P(ci/X)=MaxjP(cj/X),i=1,2,…,M,j=1,2,…,M,则有x∈ci(2)

    式(2)是最大后验概率判决准则,将式(1)代入式(2),则有:

    若P(x/ci)P(ci)=Maxj[P(x/cj)P(cj)],i=1,2,…,M,j=1,2,…,M,则x∈ci

    这就是常用到的Bayes分类判决准则。经过长期的研究,Bayes分类方法在理论上论证得比较充分,在应用上也是非常广泛的。

Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。

6)神经网络

神经网络分类算法的重点是构造阈值逻辑单元,一个值逻辑单元是一个对象,它可以输入一组加权系数的量,对它们进行求和,如果这个和达到或者超过了某个阈值,输出一个量。如有输入值X1, X2, ..., Xn 和它们的权系数:W1, W2, ..., Wn,求和计算出的 Xi*Wi ,产生了激发层 a = (X1 * W1)+(X2 * W2)+...+(Xi * Wi)+...+ (Xn * Wn),其中Xi 是各条记录出现频率或其他参数,Wi是实时特征评估模型中得到的权系数。神经网络是基于经验风险最小化原则的学习算法,有一些固有的缺陷,比如层数和神经元个数难以确定,容易陷入局部极小,还有过学习现象,这些本身的缺陷在SVM算法中可以得到很好的解决。

 

第二篇:分类算法总结

目前看到的比较全面的分类算法,总结的还不错.

2.4.1 主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。

(1)决策树

决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。

主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。

(2)贝叶斯

贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(Tree Augmented Na?ve Bayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。

(3)人工神经网络

人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(或称”神经元”,或”单元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。

目前,神经网络已有上百种不同的模型,常见的有BP网络、径向基RBF网络、Hopfield网络、随机神经网络(Boltzmann机)、竞争神经网络(Hamming网络,自组织映射网络)等。但是当前的神经网络仍普遍存在收敛速度慢、计算量大、训练时间长和不可解释等缺点。

(4)k-近邻

k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。

(5)支持向量机

支持向量机(SVM,Support Vector Machine)是Vapnik根据统计学习理论提出的一种新的学习方法[43] ,它的最大特点是根据结构风险最小化准则,以最大化分类间隔构造最优分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。对于分类问题,支持向量机算法根据区域中的样本计算该区域的决策曲面,由此确定该区域中未知样本的类别。

(6)基于关联规则的分类

关联规则挖掘是数据挖掘中一个重要的研究领域。近年来,对于如何将关联规则挖掘用于分类问题,学者们进行了广泛的研究。关联分类方法挖掘形如condset→C的规则,其中condset是项(或属性-值对)的集合,而C是类标号,这种形式的规则称为类关联规则(class association rules,CARS)。关联分类方法一般由两步组成:第一步用关联规则挖掘算法从训练数据集中挖掘出所有满足指定支持度和置信度的类关联规则;第二步使用启发式方法从挖掘出的类关联规则中挑选出一组高质量的规则用于分类。属于关联分类的算法主要包括CBA[44] ,ADT[45] ,CMAR[46] 等。

(7)集成学习(Ensemble Learning)

实际应用的复杂性和数据的多样性往往使得单一的分类方法不够有效。因此,学者们对多种分类方法的融合即集成学习进行了广泛的研究。集成学习已成为国际机器学习界的研究热点,并被称为当前机器学习四个主要研究方向之一。

集成学习是一种机器学习范式,它试图通过连续调用单个的学习算法,获得不同的基学习器,然后根据规则组合这些学习器来解决同一个问题,可以显著的提高学习系统的泛化能力。组合多个基学习器主要采用(加权)投票的方法,常见的算法有装袋[47] (Bagging),提升/推进[48, 49] (Boosting)等。

有关分类器的集成学习见图2-5。集成学习由于采用了投票平均的方法组合多个分类器,所以有可能减少单个分类器的误差,获得对问题空间模型更加准确的表示,从而提高分类器的分类准确度。

图2-5:分类器的集成学习

以上简单介绍了各种主要的分类方法,应该说其都有各自不同的特点及优缺点。对于数据库负载的自动识别,应该选择哪种方法呢?用来比较和评估分类方法的标准[50] 主要有:(1)预测的准确率。模型正确地预测新样本的类标号的能力;(2)计算速度。包括构造模型以及使用模型进行分类的时间;(3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;

(4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;(5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。

相关推荐