霍尔效应

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期 实验题目:通过霍尔效应测量磁场

实验目的:

? 了解霍尔效应原理以及有关霍尔器件对材料要求的知识。

? 学习用“对称测量法”消除付效应影响。

? 根据霍尔电压判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,

实验原理:

? 通过霍尔效应测量磁场

霍尔效应装置如图2.3.1-1和图2.3.1-2所示。将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A’上施加电流I时,薄片内定向移动的载流子(设平均速率为

霍尔效应

u)受到洛伦兹力FB的作用,

FB = q u B (1)

无论载流子是负电荷还是正电荷,FB的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B’两侧产生一个电位差VBB’,形成一个电场E。电场使载流子又受到一个与FB方向相反的电场力FE,

FE=q E = q VBB’ / b

(2)

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期 其中b为薄片宽度,FE随着电荷累积而增大,当达到稳定状态时FE=FB,即

q uB = q VBB’ / b (3)

这时在B、B’两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B’称为霍尔电极。

另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I与u的关系为:

I?bdnqu (4)

由(3)和(4)可得到

VBB??1IB nqd (5)

令R?1,则 nq

VBB??RIB d (6)

R称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。 在应用中,(6)常以如下形式出现:

VBB??KHIB (7)

式中KH?R1称为霍尔元件灵敏度,I称为控制电流。 ?dnqd

由式(7)可见,若I、KH已知,只要测出霍尔电压VBB’,即可算出磁场B的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由VBB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

由于霍尔效应建立所需时间很短(10-12~10-14s),因此霍尔元件使用交流电或者直流电都可。指示交流电时,得到的霍尔电压也是交变的,(7)中的I和VBB’应理解为有效值。 ? 霍尔效应实验中的副效应

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期 在实际应用中,伴随霍尔效应经常存在其他效应。例如实际中载流子迁移速率u服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。这样使得一侧告诉载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。这种横向温差就是温差电动势VE,这种现象称为爱延豪森效应。这种效应建立需要一定时间,如果采用直流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱延豪森效应来不及建立,可以减小测量误差。

此外,在使用霍尔元件时还存在不等位电动势引起的误差,这是因为霍尔电极B、B’不可能绝对对称焊在霍尔片两侧产生的。由于目前生产工艺水平较高,不等位电动势很小,故一般可以忽略,也可以用一个电位器加以平衡(图2.3.1-1中电位器R1)。

我们可以通过改变IS和磁场B的方向消除大多数付效应。具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VBB’,即

霍尔效应

然后得到霍尔电压平均值,这样虽然不能消除所有的付效应,但其引入的误差不大,可以忽略不计。

电导率测量方法如下图所示。设B’C间距离为L,样品横截面积为S=bd,流经样品电流为IS,在零磁场下,测得B’C间电压为VB’C,根据欧姆定律可以求出材料的电导率。

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期

实验内容和仪器:QS-H霍尔效应组合仪,小磁针,测试仪。

?

霍尔效应

霍尔效应组合仪包括电磁铁,霍尔样品和样品架,换向开关和接线柱,如下图所示。

? 测试仪由励磁恒流源IM,样品工作恒流源IS,数字电流表,数字毫伏表等组成,仪器面板如下图:

霍尔效应

霍尔效应

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期

实验内容:?

将测试仪上IM输出,IS输出和VH输入三对接线柱分别与实验台上对应接线柱连接。打开测试仪电源开关,预热数分钟后开始实验。

? 保持IM不变,取IM=0.45A,IS取1.00,1.50??,4.50mA,测绘VH-IS曲线,计算RH。 ? 保持IS不变,取IS=4.50mA,IM取0.100,0.150??,0.450mA,测绘VH-IM曲线。 ? 在零磁场下,取IS=0.1mA,测VB’C(即V?)。 ? 确定样品导电类型,并求n ,u,?。 数据处理: 1. 基本参数: 螺线管参数:4400GS/A

霍尔元件片的参数为: l=3.0mm b=4.0mm d=0.5mm 2. 当IM=0.45A保持不变时 B=0.45*4400GS=1980GS

霍尔效应

利用origin作出VH-IS图像可得:

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期

3. 当Is=0.45A保持不变时

霍尔效应

利用origin作出VH-Im图像可得:

霍尔效应

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期

4. 在零磁场下,取IS=0.1mA

测得VB’C=10.08V

5. 确定样品导电类型,并求n ,u,?。

如右图即为所确定的样品导电类型,载流子为电子。

对于n ,u,?,求解过程如下:?

对于保持IM=0.45A时,图像性质为:

霍尔效应

霍尔效应

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期

3681即为

KHB

3

由拟合得出的以上数据和公式VBB'?KHIsB知道:KHB=3681?

则:KH=3681?1.859V/(A*GS) 1980

RH?KH?d?1.858?0.05?0.0930(cm3/c)

载流子密度 n?1

RHe?1?6.72?1019(1/cm3)?190.0930?1.6?10

对于保持IS=4.50mA时:图像性质为:

37.11即为

4400KHIs

由拟合得到的数据和公式VBB'?KHIsB?KHIs?4400Im知道:KHIs=

则:KH37.11?0.0084V/GS 4400=0.0084V/GS=1.874V/(A*GS) 4.5?10?3A

Rd=1.874*0.05=0.0937(cm3/c) H?KH*

评分:

电子科学与技术 系级 学号 姓名 刘书勤 日期 载流子密度 n?1

RHe?1?6.67?1019(1/cm3) ?190.0937?1.6?10

取平均值得到:n?6.70?1019 (

霍尔效应

1/cm3)

材料的电导率

霍尔效应

载流子迁移率 思考题:

1.若磁场不恰好与霍尔元件片的法线一致,对测量结果会有何影响?如何用实验的方法判断B与元件法线是否一致?

答:元件的法线与磁场不一致,会使得VBB'偏小,从而使测得的B偏小,进而造成KH偏大。要判断B与元件法线是否一致,只需转动霍尔元件,当B取最大值时,B即与法线方向一致。

 

第二篇:霍尔效应原理及其应用

内容?举例如下:

物理实验报告

一、实验名称: 霍尔效应原理及其应用

二、实验目的:

1、了解霍尔效应产生原理;

2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;

3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)

四、实验原理:

1、霍尔效应现象及物理解释

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。

设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

(1-1)

因为 , ,又根据 ,则

(1-2)

其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :

(1-3)

(1—4)

为霍尔元件灵敏度。根据RH可进一步确定以下参数。

(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。

(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

(1-5)

2、霍尔效应中的副效应及其消除方法

上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。

(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

, :

, :

, :

, :

然后求 , , , 的代数平均值得:

通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为

(1-6)

3、直螺线管中的磁场分布

1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

(1-7)

2、直螺旋管离中点 处的轴向磁感应强度理论公式:

(1-8)

式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

X=0时,螺旋管中点的磁感应强度

(1-9)

五、 实验内容:

测量霍尔元件的 、 关系;

1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。

2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。

3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。

4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。

6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

测量长直螺旋管轴向磁感应强度

1、取 =10 mA, =900mA。

2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。

3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。

六、 注意事项:

1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。

2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。

3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。

4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。

七、 数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm

表1 关系 ( =900mA)

(mV) (mV) (mV) (mV)

1.00 0.28 -0.27 0.31 -0.30 0.29

2.00 0.59 -0.58 0.63 -0.64 0.61

3.00 0.89 -0.87 0.95 -0.96 0.90

4.00 1.20 -1.16 1.27 -1.29 1.23

5.00 1.49 -1.46 1.59 -1.61 1.54

6.00 1.80 -1.77 1.90 -1.93 1.85

7.00 2.11 -2.07 2.22 -2.25 2.17

8.00 2.41 -2.38 2.65 -2.54 2.47

9.00 2.68 -2.69 2.84 -2.87 2.77

10.00 2.99 -3.00 3.17 -3.19 3.09

表2 关系 ( =10.00mA) (mV) (mV) (mV) (mV)

0 -0.10 0.08 0.14 -0.16 0.12

100 0.18 -0.20 0.46 -0.47 0.33

200 0.52 -0.54 0.80 -0.79 0.66

300 0.85 -0.88 1.14 -1.15 1.00

400 1.20 -1.22 1.48 -1.49 1.35

500 1.54 -1.56 1.82 -1.83 1.69

600 1.88 -1.89 2.17 -2.16 2.02

700 2.23 -2.24 2.50 -2.51 2.37

800 2.56 -2.58 2.84 -2.85 2.71

900 2.90 -2.92 3.18 -3.20 3.05

表3 关系 =10.00mA, =900mA

(mV) (mV) (mV) (mV) B ×10-3T

0 0.54 -0.56- 0.73 -0.74 2.88

0.5 0.95 -0.99 1.17 -1.18 4.64

1.0 1.55 -1.58 1.80 -1.75 7.23

2.0 2.33 2.37- 2.88 -2.52 10.57

4.0 2.74 -2.79 2.96 -2.94 12.30

6.0 2.88 -2.92 3.09 -3.08 12.90

8.0 2.91 -2.95 3.13 -3.11 13.10

10.0 2.92 -2.96 3.13 -3.13 13.10

12.0 2.94 -2.99 3.15 -3.06 13.20

14.0 2.96 -2.99 3.16 -3.17 13.3

八、 数据处理:(作图用坐标纸)

九、 实验结果:

实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。 长直螺旋管轴向磁感应强度:

B=UH/KH*IS=1.33x10-2T

理论值比较误差为: E=5.3%

十、问题讨论(或思考题):

相关推荐