光栅制作实验

全息光栅的制作及其参数测量

浏览次数:652次悬赏分:20 | 解决时间:20##-12-16 23:14 | 提问者:Dreamer成仙

请高人告诉我实验原理和方法。最好有图!! 还有下列问题求助:

1.要拍摄一张优质的全息光栅要注意哪些主要环节?

2.为什么制作全息光栅的显影密度要比制作全息图像时要大,即显影后的颜色要深?显影密度的具体数值与光栅常熟的大小有什么关系?

3.拍摄全息光栅时,两束平行光的光程差大好还是小好?夹角大好还是小好?

4.评价一张全息光栅主要特性参数有哪些?

最佳答案

全息光栅的制作(实验报告)完美版   

标签: 光栅 干片 发散镜 双缝 白屏 教育

设计性试验看似可怕,但实际操作还是比较简单的~

我的实验报告,仅供参考~

                                  实验报告封面

全息光栅的制作

一、        实验任务

设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。

二、        实验要求

1、设计三种以上制作全息光栅的方法,并进行比较。

2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。

3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。

三、        实验的基本物理原理

1、光栅产生的原理

光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。

        

                                          图1

2、测量光栅常数的方法:

用测量显微镜测量;

用分光计,根据光栅方程d·sin =k 来测量;

用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。

四、        实验的具体方案及比较

1、洛埃镜改进法:

基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。

优点:这种方法省去了制造双缝的步骤。

缺点:光源必须十分靠近平面镜。

实验原理图:

       

图2

2、杨氏双缝干涉法:

基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。

因双缝间距d远小于缝到屏的距离L,P点处的光程差:

      

图3

δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ

这是因为θ角度很小的时候,可以近似认为相等。

干涉明条纹的位置可由干涉极大条件δ=kλ得:

x=(L/d)kλ,

干涉暗条纹位置可由干涉极小条件δ=(k+1/2)λ得:

x=(D/d)(k+1/2)λ

明条纹之间、暗条纹之间距都是

Δx =λ(D/d)

因此干涉条纹是等距离分布的。

而且注意上面的公式都有波长参数在里面,波长越长,相差越大。

条纹形状:为一组与狭缝平行、等间隔的直线(干涉条纹特点)d= L/△x

优点:使用激光光源相干条件很容易满足。

缺点:所需的实验仪器较复杂,不易得到。

实验原理图:

            

图4

3、马赫—曾德干涉仪法:

基本物理原理:只要调节光路中的一面分光镜的方位角,就可以改变透射光和反射光的夹角,从而改变干涉条纹的间距。

优点:这种方法对光路的精确度要求不高,实验效果不错,易于学生操作。

缺点:这种方法对光路的精确度要求不高,实验可能不够精确。

实验原理图:

        

                                        图5

五、        仪器的选择与配套

综合考虑各方面条件,本次试验采用马赫—曾德干涉仪法,所需的实验仪器有He-Ne激光发射器1架、发散镜1面、凸透镜1面、半反半透镜2面、全反镜2面和白屏、光阑各一、拍摄光栅用的干片若干、架子。

六、        实验步骤

(一)制作全息光栅

1.打开He-Ne激光发射器,利用白屏使激光束平行于水平面。

2.调节发散镜和激光发射器的距离使激光发散。

3.调节凸透镜和发散镜的距离使之等于凸透镜的焦距,得到平行光。

4. 调节2面半反半透镜和2面全反镜的位置和高度,使它们摆成一个平行四边形(如图5)。

5.调节半反半透镜和全反镜上的微调旋钮,使得到的2个光斑等高,且间距为4-6cm。

6. 测出实验中光路的光程差△l。

(在实验中我们测得的光路的光程差△l=1.5cm)

(二)拍摄全息光栅

1.挡住激光束,把干片放在架子上,让激光束照射在干片上1-2秒,挡住激光束,把干片取下带到暗房中。

2.把干片泡在显影液中适当的时间(时间长度由显影液的浓度决定),取出,用清水冲洗,在泡在定影液中约5分钟。取出,冲洗后晾干。

3.用激光束检验冲洗好的干片,若能看见零级、一级的光斑,说明此干片可以用于测定光栅常数。

(三)测定所制光栅的光栅常数

实际图:

                         此图参照老师所给实验内容报告上的图来画

                                         图6

原始数据表:

x

1

2

3

4

5

6

r(cm)

23.81

24.12

23.93

24.24

23.65

23.66

h(cm)

144.36

144.65

143.84

144.03

144.52

144.11

计算过程:

七、实验注意事项

1、不要正对着激光束观察,以免损坏眼睛。

2、半导体激光器工作电压为直流电压3V,应用专用220V/3V直流电源工作(该电源可避免接通电源瞬间电感效应产生高电压的功能),以延长半导体激光器的工作寿命。

八、    实验总结

设计型实验,原先并没有接触过。以前的实验,都是了解了书上介绍的实验原理后,严格按照书上的详细步骤来做的,不需要自己去思考和研究太多的东西。这一次准备设计型实验,让我锻炼了好多方面的能力。首先,书上给出的只有简单而概括的指导,所有的东西都要自己去查资料,去想办法解决。连试验究竟是怎么回事都不知道的情况下,要先去网上大概了解实验内容和原理,然后查阅相关文献,具体研究实验方案。尤其,这次的试验,需要我们自己提供三种以上的不同实验方案,进行细致比较之后选定一种。这就要求我们熟悉和掌握每种方案的原理、具体操作步骤和对应的优点缺点,逐一分析比较之后,在将自己的选定方案展开。这一系列过程要花费大部分时间在图书馆,因为要在浩瀚的文献中找到自己需要的,对于我这个还没上完科技文献检索课的学生来说,真的有点困难。我的报告中,有一部分资料来源于互联网,然而网上的东西又不完全符合我的要求,修修改改,总算弄得差不多了。其实,自己明白了原理,按照自己预先设计好的方案进行实验,在具体操作过程中,问题并不大,可以说,做让人费神的是预习时候的实验报告的书写。现在,实验已经基本做完,感觉收获却是很大。以后,对于设计型实验,也可以更熟练的进行了。

想说,在进行实验的全部过程中,科学和严谨的态度是最重要的,不可以在不明白的情况下进行试验,不可以在数据有问题的情况下继续试验,后期的实验数据处理,也要认真对待

 

第二篇:超声光栅实验

 

仪器使用说明                                                                                           

TEACHER'S GUIDEBOOK

FD-UG-A

超声光栅实验仪

中国.上海复旦天欣科教仪器有限公司

Shanghai Fudan Tianxin Scientific_Education Instruments Co.,Ltd.

FD-UG-A超声光栅实验仪使用说明

一、概述

光波在液体介质中传播时被超声波衍射的现象,称为超声致光衍射(亦称声光效应),这种现象是光波与介质中声波相互作用的结果。超声波调制了液体的密度,使原来均匀透明的液体,变成折射率周期变化的“超声光栅”,当光束穿过时,就会产生衍射现象,由此可以准确测量声波在液体中的传播速度。并且,由于激光技术和超声技术的发展,使声光效应得到了广泛的应用。如制成声光调制器和偏转器,可以快速而有效地控制激光束的频率、强度和方向,它在激光技术、光信号处理和集成通讯技术等方面有着非常重要的应用。

由上海复旦天欣科教仪器有限公司生产的FD-UG-A型超声光栅实验仪改变了以往超声光栅在分光仪上完成的传统,将平行光管和望远镜中的各个光学元件独立的放置在光学导轨上,让学生自主调节,这样增加了学生动手能力方面的锻炼,并且将可调狭缝改为光刻狭缝,这样观察到的衍射光谱更加锐细明亮,测量更加准确。

该仪器测量准确度高,实验稳定可靠,适用于高等院校基础物理实验以及近代物理实验。

二、仪器简介

图1 超声光栅仪器装置

三、技术指标

1.超声信号源  共振频率约10.000MHz左右,分辨率0.001MHz

2.光刻狭缝    缝宽:0.04mm,缝长:6mm

3.透镜        通光孔径:28mm,透镜焦距:157mm

4.超声池      长度:80mm,宽度:40mm,高度:59mm

5.测微目镜    测量范围:0-8mm,分辨率:0.01mm

6.光学导轨    长度:650mm,长度测量分辨率:1mm

四、实验项目

1.  了解声光效应的实验原理。

2.  学习利用声光效应测量液体中的声速。

3.  学习光路准直的调节以及读数显微镜的使用方法

五、注意事项

1. 液槽置于载物台上必须稳定,在实验过程中应避免震动,以使超声在液槽内形成稳定的驻波。导线分布电容的变化会对输出信号频率有影响,因此不能触碰连接液槽和信号源的导线。

2. 压电陶瓷片表面与对面的液槽壁表面必须平行,此时才会形成较好的驻波,因此实验时应将液槽的上盖盖平。

3. 压电陶瓷片的共振频率在10MHz左右,在稳定共振时,数字频率计显示的频率应是稳定的,最多只有最末尾有1–2个单位数的变动。

4. 实验时间不宜过长,因为声波在液体中的传播与液体温度有关,时间过长,液体温度可能有变化。实验时,特别注意不要使频率长时间调在10MHz以上,以免振荡线路过热。

5. 提取液槽应拿两端面,不要触摸两侧表面通光部位,以免污染,如已有污染,可用酒精清洗干净,或用镜头纸擦净。

6. 实验时液槽中会产生一定的热量,并导致媒质挥发,槽壁可见挥发气体凝聚,一般不影响实验结果,但须注意若液面下降太多致使压电陶瓷片外露时,应及时补充液体至正常液面线处。

7. 实验完毕应将被测液体倒出,不要将压电陶瓷片长时间浸泡在液槽内。

8. 传声媒介在含有杂质时对测量结果影响较大,建议使用纯净水(市售饮用纯净水即可)、分析纯酒精、甘油等,对某些有毒副作用的媒质(如苯等),不建议学生实验使用,教师教学或科研需要时,应注意安全。

9. 仪器长时间不用时,请将测微目镜收于原装小木箱中并放置干燥剂。液槽应清洗干净,自然晾干后,妥善放置,不可让灰尘等污物侵入。

超声光栅实验

【实验目的】

1. 了解超声致光衍射的原理。

2. 利用声光效应测量声波在液体中的传播速度。

【实验原理】

压电陶瓷片(PZT)在高频信号源(频率约10MHz)所产生的的交变电场的作用下,发生周期性的压缩和伸长振动,其在液体中的传播就形成超声波,当一束平面超声波在液体中传播时,其声压使液体分子作周期性变化,液体的局部就会产生周期性的膨胀与压缩,这使得液体的密度在波传播方向上形成周期性分布,促使液体的折射率也做同样分布,形成了所谓疏密波,这种疏密波所形成的密度分布层次结构,就是超声场的图象,此时若有平行光沿垂直于超声波传播方向通过液体时,平行光会被衍射。以上超声场在液体中形成的密度分布层次结构是以行波运动的,为了使实验条件易实现,衍射现象易于稳定观察,实验中是在有限尺寸液槽内形成稳定驻波条件下进行观察,由于驻波振幅可以达到行波振幅的两倍,这样就加剧了液体疏密变化的程度。驻波形成以后,某一时刻t,驻波某一节点两边的质点涌向该节点,使该节点附近成为质点密集区,在半个周期以后,t+T/2,这个节点两边的质点又向左右扩散,使该波节附近成为质点稀疏区,而相邻的两波节附近成为质点密集区。

图1

图1 为在tt+T/2(T为超声振动周期)两时刻振幅y、液体疏密分布和折射率n的变化分析。由图1可见,超声光栅的性质是,在某一时刻t,相邻两个密集区域的距离为,为液体中传播的行波的波长,而在半个周期以后,t+T/2。所有这样区域的位置整个漂移了一个距离/2,而在其它时刻,波的现象则完全消失,液体的密度处于均匀状态。超声场形成的层次结构消失,在视觉上是观察不到的,当光线通过超声场时,观察驻波场的结果是,波节为暗条纹(不透光),波腹为亮条纹(透光)。明暗条纹的间距为声波波长的一半,即为λ/2。由此我们对由超声场的层次结构所形成的超声光栅性质有了了解。当平行光通过超声光栅时,光线衍射的主极大位置由光栅方程决定。

   (k=0,1,2,……)              (1)

光路图如图2所示。

图2 超声光栅实验光路图

实际上由于角很小,可以认为: 

                            (2)

其中为衍射零级光谱线至第k级光谱线的距离,fL2透镜的焦距,所以超声波的波长                      (3)

超声波在液体中的传播速度:

                                    (4)

式中为信号源的振动频率。

【实验仪器】

实验装置主要由控制主机(超声信号源)、低压钠灯、光学导轨、光学狭缝、透镜、超声池、测微目镜以及高频连接线组成。如图3所示。

图3 超声光栅实验装置

【实验过程】

1.将器件按图3放置。低压钠灯于超声光栅试验仪相连。

2.调节狭缝与透镜L1的位置,使狭缝与分光计垂直,狭缝中心法线与透镜L1的光轴(即主光轴)重合,且与分光计平行。二者间距为透镜L1的焦距(即透镜L1射出平行光)。

3.调节透镜L2与测微目镜的高度,使二者光轴与主光轴重合。调焦目镜,使十字丝清晰。

4.开启电源。调节钠灯位置,使钠灯照射在狭缝上,并且上下均匀,左右对称,光强适宜。

5.将待测液体(如蒸馏水、乙醇或其他液体)注入液槽,将液槽放置于分光计上,放置时,使液槽两侧表面基本垂直于主光轴。

6.将高频连接线的一端接入液槽盖板上的接线柱,另一端接入超声光栅仪上的输出端。

7.调节测微目镜与透镜L2的位置。使目镜中能观察到清晰的衍射条纹。

8.前后移动液槽,从目镜中观察条纹间距是否改变,若是,则改变透镜L1的位置,直到条纹间距不变。

9.微调超声光栅仪上的调频旋钮,使信号源频率与压电陶瓷片谐振频率相同,此时,衍射光谱的级次会显著增多且谱线更为明亮。微转液槽,使射于液槽的平行光束垂直于液槽,同时观察视场内的衍射光谱亮度及对称性。重复上述操作,直到从目镜中观察到清晰而对称稳定的2–4级衍射条纹为止。

10.利用测微目镜逐级测量各谱线位置读数,测量时单向转动测微目镜鼓轮,以消除转动部件的螺纹间隙产生的空程误差(例如:从–3、…、0、…、+3)。

11.自拟数据表格,记录各级各谱线的位置读数,计算各谱线衍射条纹平均间距,并计算液体中的声速

【实验数据】(注:以下数据不作为仪器验收标准,仅供实验时参考)

单色光源波长    λ=(589.3±0.3)nm

透镜L2焦距      f=(157.0±0.4)mm

被测液体              普通水 

液体温度         t=  12 

  1497+2.5×(12-25)=1464  m/s

信号频率           9.130  MHz

表1.衍射级次和衍射谱线位置

(0.583+0.586+…+0.584+0.590)

0.588(mm)

  (m/s)

【注意事项】

1.调节个器件时,注意保持其同高共轴。

2.液槽置于载物台上必须稳定,在实验过程中应避免震动,以使超声在液槽内形成稳定的驻波。导线分布电容的变化会对输出信号频率有影响,因此不能触碰连接液槽和信号源的导线。

3.压电陶瓷片表面与对面的液槽壁表面必须平行,此时才会形成较好的驻波,因此实验时应将液槽的上盖盖平。

4.在稳定共振时,数字频率计显示的频率应是稳定的,最多只有最末尾有1–2个单位数的变动。

5.实验时间不宜过长,因为声波在液体中的传播与液体温度有关,时间过长,液体温度可能有变化。实验时,特别注意不要使频率长时间调在高频,以免振荡线路过热。

6.提取液槽应拿两端面,不要触摸两侧表面通光部位,以免污染,如已有污染,可用酒精清洗干净,或用镜头纸擦净。

7.实验时液槽中会产生一定的热量,并导致媒质挥发,槽壁可见挥发气体凝聚,一般不影响实验结果,但须注意若液面下降太多致使压电陶瓷片外露时,应及时补充液体至正常液面线处。

8.实验完毕应将被测液体倒出,不要将压电陶瓷片长时间浸泡在液槽内。

9.计算时,透镜焦距f为透镜L2的焦距。

10.传声媒介在含有杂质时对测量结果影响较大,建议使用纯净水(市售饮用纯净水即可)、分析纯酒精、甘油等,对某些有毒副作用的媒质(如苯等),不建议学生实验使用,教师教学或科研需要时,应注意安全。

11.仪器长时间不用时,请将测微目镜收于原装小木箱中并放置干燥剂。液槽应清洗干净,自然晾干后,妥善放置,不可让灰尘等污物侵入。

【思考题】

1.为什么声光器件可相当于相位光栅?

2.怎样判断平行光束垂直入射到超生光栅面?怎样判断压电陶瓷片处于共振状态?

3.从实验数据去检验声光衍射条件是否满足。

【参考资料】

1.沈元华,陆申龙. 基础物理实验. 北京:高等教育出版社. 2003.275-281

2.光学手册. 陕西科技出版社. 1986.P.1089

【附录】

纯净液体中的声速

表中α为温度系数,对于其他温度时的声速可近似按公式计算。

 

上海复旦天欣科教仪器有限公司

FD-UG-A型超声光栅实验仪

装 箱 清 单

您购买的产品与装箱清单中是否符合,请验收。

日期:  年   月   日

相关推荐