电力系统分析实验报告

16300000623104125731456352037[1]

邓小平题写川大校名

电力系统分析实验报告

实验项目 :   1、单机-无穷大系统稳态运行实验  

             2电力系统暂态稳定实验

    :   电气信息学院

    :   电气工程及其自动化   

    :   2010       

    :             

    :                 


单机—无穷大系统稳态运行实验

一、实验目的

1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;

2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明

电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

..\..\..\..\tubiao\无穷大.tif

图2  一次系统接线图

本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。

三、实验项目和方法

   2.双回路对称运行与单回路对称运行比较实验

在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验2的结果进行比较和分析。

表3-1

注:UZ —中间开关站电压;

DU —输电线路的电压损耗;

—  输电线路的电压降落

四、实验数据处理与结果分析

在双回路运行时,随着有功输出地增加,电机输出电压降低且电压降落减少。

五、思考题

1.影响简单系统静态稳定性的因素是哪些?

答:电力系统静态稳定是指电力系统受到小干扰后,不发生非周期性的失步,自动恢复到起始运行状态的能力。电力系统的静态稳定性是电力系统正常运行时的稳定性,电力系统静态稳定性的基本性质说明,静态储备越大则静态稳定性越高。影响简单系统静态稳定性的因素主要指来自各个方面的小干扰;还有就是发电机的电势、系统电压、系统元件电抗。小干扰通常指的是正常的负荷波动和系统操作、少量负荷的投入和切除以及系统接线的切换等。

2.提高电力系统静态稳定有哪些措施?

答:电力系统具有静态稳定性是系统正常运行的必要条件。要提高系统的静态稳定性,主要是提高输送公驴的极限。从简单电力系统的功率极限表达式PM =EV/X来看,可以从提高发电机的电势E、提高系统电压V和减小系统元件电抗X这三方面入手。具体措施如下:

主要措施有:

(1) 提高发电机的电势E:调节空载电动势,主要可以通过采用自动励磁装置,根据运行状态变量的偏移改变励磁,调节发电机励磁电流,以调节空载电动势。

(2) 减小系统元件的电抗X:所以常减小输电线路的电抗,可采用分裂导线、串联电容器补偿、增多输电线路的回路数等方法来减小电抗。

(3)提高系统的电压等级,可以提高系统的稳定性,电压越高,电压损耗越小,且增加了输送功率。

(4)提高系统的运行电压,通过备有足够的无功功率来完成,如装设调相机、静止补偿器等。

(5)改善系统的结构,加强系统联系,缩小电气距离,例如增加回路数等。

(6)采用直流输电。

3.何为电压损耗、电压降落?

答:电压损耗是指始末端电压的数值差(U1 – U2 ),也用DU表示:DU= U1 – U2 ;电压降落是指始末端电压的向量差 (U1U2)。 当两点电压的相角差相差不大时,可近似的认为电压损耗就等于电压降落。

4.两表法”测量三相功率的原理是什么?它有什么前提条件?

答:两表法是表1的电流接A相,电压接Uab;表2的电流接C相,电压接Ucb 。两表法测量:,U为相电压。

三相三系统可以用两表法测量,但是三相四线系统只有在三相平衡时才可以采用两表法,所以一般电能计量过程中,三相三线系统采用两表法,三相四线系统采用三表法。

六、实验总结与心得体会

1、电力系统分析的实验是模拟真实电力系统的实验,可以让我们大概了解电力系统的基本运作,让我们受益匪浅,在实验中,由于只有一台实验设备,各位同学团结分工合作,从中我们也学到了很多实际操作知识,对于我们以后的工作会很有帮助。

2、此次实验刚开始,老师就给我们普及了一下关于电力系统中开关红绿灯状态的知识,红灯是危险,接通,有电;绿灯是安全,断开,接通。其实这个我们早就该知道,但是老师提问的时候我们都不干回答,这就是理论与实际脱节,以后我们要加强实践锻炼。

3、此次实验,我们了解了电力系统中的静态稳定问题,及单机无穷大系统的一些情况,并知道了提高静态稳定性的一些措施,体会到了电压降落与电压损耗的区别与类同,并了解了两表法测量功率的基本原理与方法,收获颇大。

4、此次实验我印象最深的是同步电机的并网。开始先让直流电机转起来,带动同步电机,调节同步机的转速使其频率与电网的频率非常接近,调节励磁使两者的电压相等,然后观察同期系统,当指针指可以并网的位置时并网,最后并网成功。这个过程看似轻松,但如果在真正的发电厂的并网中时很关键的,一个失误的操作就可能引发很大的事故。因为并网的失败会导致很大的冲击电流使电网崩溃。

总之,我们从简单的模拟实验中学到了很多有用的实际知识,对于我们以后解决实际问题提供了平台。

电力系统暂态稳定实验

一、实验目的

1.通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。

2.学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施。

3.用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。

二、原理与说明

   电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。

正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1;

短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2;

故障切除发电机功率特性为:  P3=(Eo×Uo)×sinδ3/X3;

  对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件是切除故障角δc小于δmax,δmax可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax也不同,使对故障切除的时间要求也不同。

 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使δmax增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。

三、实验项目与方法

(一)短路对电力系统暂态稳定的影响

1.短路类型对暂态稳定的影响

本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接地短路和三相短路试验。

固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。

在手动励磁方式下通过调速器的增(减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。Pmax为系统可以稳定输出的极限,注意观察有功表的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-Ⅲ型微机保护装置读出,具体显示为:

GL-´´´  三相过流值

GA-´´´  A相过流值

GB-´´´  B相过流值

GC-´´´  C相过流值

微机保护装置的整定值代码如下:

        01: 过流保护动作延迟时间

02: 重合闸动作延迟时间

03: 过电流整定值

04: 过流保护投切选择

        05: 重合闸投切选择

另外,短路时间TD由面板上“短路时间”继电器整定,具体整定参数为表5-1。

表5-1

微机保护装置的整定方法如下:按压“画面切换”按钮,当数码管显示『PA- 』时,按压触摸按钮“+”或“-”输入密码,待密码输入后,按下按键“△”,如果输入密码正确,就会进入整定值修改画面。进入整定值修改画面后,通过“△”“▽”先选01整定项目,再按压触摸按钮“+”或“-”选择当保护时间(s);通过“△”“▽”选03整定项目,再按压触摸按钮“+”或“-”选择当过电流保护值;通过“△”“▽”选04整定项目,再按压触摸按钮“+”或“-”选择当过电流保护投切ON;通过“△”“▽”选05整定项目,再按压触摸按钮“+”或“-”选择重合闸投切为OFF。(详细操作方法WDT-Ⅲ综合自动化试验台使用说明书。)

表5-2       短路切除时间t=0.5s       短路类型:单相接地短路

   (0:表示对应线路开关断开状态    1:表示对应线路开关闭合状态)

表5-3       短路切除时间t=0.5s       短路类型:两相相间短路

表5-4       短路切除时间t=0.5s       短路类型:两相接地短路

  表5-5       短路切除时间t=0.5s       短路类型:三相短路

四、实验数据的处理与分析

整理不同短路类型下获得实验数据,通过对比,对不同短路类型进行定性分析,详细说明不同短路类型和短路点对系统的稳定性的影响。

1. 电力系统的暂态稳定是指电力系统在某一运行状态下受到大的干扰后能够保持继续同步运行的稳定状态。

2.根据不同短路类型下的极限功率测定结果,可知,单相接地短路对系统稳定性影响最小,两相相间短路次之,两相接地短路再次之;通过短路点的最大短路电流亦可分析出上述结果。在相同的短路类型下,由实验结果分析可知,短路点离发电机越远,短路对系统稳定性影响越小。

五、思考题

1.不同短路状态下对系统阻抗产生影响的机理是什么?

     答:发生短路时,根据正序等效定则,在正常等值电路中的短路点接入附加电抗,就得到故障情况下的等值电路,此时,就可计算出发电机与系统间的转移电抗。由于在不同短路故障时有不同的附加电抗,使得不同短路状况下的系统阻抗不同。

      利用对称分量法,将阻抗的不对称装换为电压和电流的不对称,同时,根据各序分量具有独立性的特点,进行短路的等效计算。单相短路时,总的阻抗等于正序,负序和零序电抗的串联叠加,因此总的阻抗比较大。两相短路时没有零序电抗,是正序电抗和负序电抗的串联叠加,因此电抗比单项短路时要小。两线接地短路时,总的电抗等于负序电抗和零序电抗并联过后,再与正序电抗串联叠加,因此它的总的电抗比单相短路和两相接地短路的电抗都要小,因此在两相接地短路时的短路电流最大,系统就最不稳定。

2.提高电力系统暂态稳定的措施有哪些?

答:提高系统的暂态稳定性就要尽可能的减小发电机转轴上的不平衡功率,减小转子相对加速度以及减小转子的相对变化量,从而减小发电机转子相对运动的震荡幅度。主要措施有以下几条:

(1):快速切除故障

(2):发电机快速强行励磁

(3):发电机电气制动

(4):采用自动重合闸

(5):变压器中性点经小电阻接地

(6):输电线路强行串联补偿

(7):切发电机和切负荷

(8):设计中间开关站

4.自动重合闸装置对系统暂态稳定的影响是什么?

答:电力网络中的短路故障大多数是有网络放电造成的,是暂时性的,在切除故障线路,经过一段电弧熄灭和空气去游离之后,短路故障便完全消除了。如果再把线路重新投入系统,它便能继续投入工作。若重新投入输电线路是由开关设备自动进行,则称为自动重合闸。自动重合闸成功,对暂态稳定和事故后的静态稳定都有很好的作用。在采用自动重合闸时应注意:若短路故障相被切除后,其他两相导线仍然带电,由于相间电容耦合作用,被切除相仍有相当高的电压,使电弧不易熄灭。同时由于相间电容的作用,从完好相经过相间耦合电容到故障相,再经过短路点到大地,形成电容电流的同路。会大大恶化系统的暂态稳定性。故重合闸时间必须大于潜供电弧的熄灭时间。

六、实验总结与心得体会

1、 这次实验我影响最深的是每次线路出故障,断路器胡自动断开,比如说线路的一相接地短路,三相短路,三相接地短路等等一系列让电网产生危险的可能情况,这些都导致了我们的表记的指针的乱晃,最后导致电路断开。这些保护措施都是继电保护在起作用。

2、电力系统分析的实验是模拟真实电力系统的实验,可以让我们大概了解电力系统的基本运作,让我们受益匪浅,从中我们也学到了很多实际操作知识,对于我们以后的工作会很有帮助。

3、此次在做实验的过程中,我们的实验中游这样一个现象断路器断开后合上去,不管有功调多小,做短路故障实验断路器还是跳闸,后面从老师那才知道我们没有考虑重合闸的时间,要等个一分钟爱能重新做短路实验。

4、我们了解了电力系统中的暂态稳定问题,不同短路情况下的电路基本状况,对于实际系统进行了模拟。了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响。

实际操作中,虽有很多失误,但也从简单的模拟实验中学到了很多有用的实际知识,从中明白了一些道理,体会到了动手实践的重要性。

 

第二篇:南昌大学电力系统分析实验报告2

南昌大学实验报告

学生姓名:   学号:   专业班级:               

实验类型:□ 验证 □ 综合 ■ 设计 □ 创新   实验日期: 12.7     实验成绩:            

一、实验项目名称

    电力系统短路计算实验

二、实验目的与要求:

目的:通过实验教学加深学生的基本概念,掌握电力系统的特点,使学生通过系统进行物理模拟和数学模拟,对系统进行电力系统计算和仿真实验,以达到理论联系实际的效果。通过电子计算机对电力系统短路等计算的数学模拟,分析电力系统的故障计算方法、实现工程计算的功能。提高处理电力系统工程计算问题的实际能力,以及实现对电力系统仿真的过程分析。

要求:

l、 使学生掌握对电力系统进行计算、仿真试验的方法,了解实验对电力系统分析研究的必要性和意义。

2、使学生掌握使用实验设备计算机和相关计算软件、编程语言。

3、应用电子计算机完成电力系统的短路计算。

4、应用电子计算机及相关软件对电力系统进行仿真。  

三、主要仪器设备及耗材

1.每组计算机1台、相关计算软件1套

四、实验步骤

1.        将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。

2.        在相应的编程环境下对程序进行组织调试。

3.        应用计算例题验证程序的计算效果。

4.        对调试正确的计算程序进行存储、打印。

5.        完成本次实验的实验报告。

五、实验数据及处理结果

运行自行设计的程序,把结果与例题的计算结果相比较,验证所采用的短路电流计算方法及程序运行的正确性。如果采用的是近似计算方法,还需分析由于近似所产生的误差是否在运行范围内。

实验程序:

clear clc;

z=[0.2i,inf,0.51i,inf;

inf,4i,0.59i,inf;

0.51i,0.59i,inf,1.43i;

inf,inf,1.43i,inf];

y=[0,0,0,0;

0,0,0,0;

0,0,0,0;

0,0,0,0];

f=4;

Y=zeros(4,4);

for(i=1:4),

    for(j=1:4),

        if i==j

            Y(i,j)=Y(i,j)

        else

            Y(i,j)=-1.0/z(i,j)

        end

    end

end

for (i=1:4),

    for(j=1:4),

        Y(i,i)=Y(i,i)+y(i,j)+1.0/z(i,j)

    end

end

Z=inv(Y);

If=1/Z(f,f);

实验结果:If=0-0.48902i   

实验例题所给结果短路电流:If = - j0.4895,与程序运行结果在误差允许范围之内,故验证了该程序的正确性。

六、思考讨论题或体会或对改进实验的建议

1.      理解课本上讲述的同步电机突然三相短路的物理分析。

答:同步电机稳态对称运行(包括稳态对称短路)时,电枢磁势大小不随时间变化,而在空间以同步速旋转,同转子没有相对运动,故不会在转子绕组中感应电流。突然短路时,定子电流发生急剧的变化,电枢反应磁通也随着变化,定转子间电流会相互影响,这是同步电机突然短路暂态过程区别于稳态短路的显著特点。我们在进行磁感分析时,对于每个绕组都遵守磁链守恒原则。

对于无阻尼绕组同步电机突然三相短路时,短路后定子侧将出现:①基频电流,由三相对称绕组的基频电流产生的交变磁链,用以抵消转子主磁场对定子各相绕组产生的交变磁链;②直流:对各绕组产生的不变,来维持定子绕组的磁链初值不变;③倍频电流:定子各相直流产生的恒定磁势,当转子旋转时,因转子纵横轴磁阻不同,转子每转过,磁阻经历一个变化周期,为适应磁阻的变化,产生倍频电流与直流共同作用,才能维持定子侧磁链初值不变。

转子侧产生:①附加直流分量:为抵消定子电流对转子产生的强烈电枢反应影响,维持磁链不变,该附加直流与原直流同向,加强了励磁绕组的磁场,而且产生磁通的一部分也要穿过定子绕组,故激起定子基频电流大大超过稳态短路电流

②转子基频交流:为抵消定子的直流和倍频电流产生的电枢反应,该基频电流在转子产生脉振磁场,分解为正反两方向磁场,又来影响定子侧的以及在定子侧产生两倍频的交变磁链,定子侧的就是为了抵消该磁链而产生的。

2.      简述无阻尼绕组同步电机突然三相短路时,短路电流所含各种分量以及各自由电流衰减时间常数的确定,有阻尼绕组同步电机突然三相短路时有什么不同之处?

答:(1)无阻尼绕组同步电机突然三相短路时,定子侧短路电流有:①基频电流:抵消转子主磁场对定子各相绕组产生的交变磁链;②直流:维持定子绕组的磁链初值不变。③倍频电流:为适应磁阻的变化,倍频电流与直流共同作用,才能维持定子侧磁链初值不变。

转子侧短路电流有:①附加直流分量:为抵消定子电流对转子产生的强烈电枢反应影响,维持磁链不变;②转子基频交流:为抵消定子的直流和倍频电流产生的电枢反应。

(2)在实用计算中,各自由电流衰减常数确定,常采用以下的简化原则:①为维持磁链守恒而在短路瞬间出现的自由电流,若它产生的磁通对于本绕组相对静止,那该电流将按本绕组时间常数衰减,一切同改自由电流发生依存关系的均按同一时间常数衰减;②某绕组时间常数是该绕组电感同电阻之比,而忽略其他绕组电阻的影响。

(3)有阻尼绕组同步电机突然三相短路时的不同:有阻尼绕组电机,在转子纵轴向有励磁绕组和阻尼绕组,横轴向也有阻尼绕组。突然短路时,定子基频电流突然增大,电枢反应磁通也突然增加,励磁绕组、阻尼绕组为维持磁链守恒,都会感应出自由直流,由此来抵消电枢反应磁通的增加。转子各绕组自由直流产生磁通一部分又进入定子侧,由此定子侧会有基频电流自由分量。注意,转子纵轴向的励磁绕组和阻尼绕组间存在互感关系,突然短路瞬间它们当中任一绕组的磁链守恒都是靠两绕组的自有电流共同维持的。

3.      简述电力系统三相短路电流的实用计算的条件,应用前提及使用方法。

电力系统三相短路电流的实用计算的条件:

(1)起始次暂态电流的实用计算条件:把系统所有元件都用其次暂态参数代表,次暂态电流计算就同稳态电流计算一样,系统中所有静止元件的次暂态参数都与其稳态参数一致,而旋转电机的次暂态参数则不同于其稳态参数。

短路时,同步电机的次暂态电势  ①,实用计算中汽轮机和有阻尼绕组的凸极发电机的;对于异步电动机的(是异步电机起动电流的标幺值),   ②。

实用计算中,只对于短路点附近能显著提供短路电流的大型电动机,才按上式①②算出次暂态电抗和次暂态电势。其他电动机,则看作是系统中负荷节点的综合负荷的一部分,该综合负荷可近似用一个含次暂态电抗和次暂态电势的等值支路表示。

(2)负荷提供的冲击电流,式中为负荷提供的起始次暂态电流的有效值,为冲击系数

4.      三相短路时短路容量的标么值等于什么?

答:三相短路时短路容量标幺值,式中是系统的基准容量,是短路点输入电抗的标幺值。

七、实验小结

     在有过上次计算电力网数学模型模拟实验后,对于怎么用MATLAB软件来求解电力网络节点导纳矩阵有了一定的基础,所以这次实验相对来说是比较轻松的。本次实验就是通过节点导纳矩阵来求解系统的短路电流的标幺值。

     所以本实验也是在求出系统的导纳矩阵的基础上进行的。还过这里是先求出系统的节点阻抗矩阵,利用求解阻抗矩阵的逆矩阵来求解系统的导纳矩阵。在求出了系统的导纳矩阵之后,这是一个含有发电机支路和负荷的节点矩阵,利用节点方程YV=I可知,设发电机的电势为1,则I=1/Y可以求出短路电流。

八、参考资料

1.        《电力系统分析》    何仰赞  华中科技大学出版社

2.        《电力系统稳态分析》陈珩  中国电力出版社

3.        《电力系统暂态分析》李光琦  中国电力出版社

4.        《电力系统计算》    水利电力出版社

实验素材:

相关推荐