电力系统实验报告(13600字)

来源:m.fanwen118.com时间:2021.7.8

电力系统实验报告

学 院:核技术与自动化工程学院专 业:电气工程及其自动化指导老师 :顾珉姓 名 :许

学 号 : 新 200706050209

实验一 发电机组的启动与运转实验

一 实验目的

1 了解微机调速装置的工作原理和掌握其操作方法。

2 熟悉发电机组中原动机(直流电动机)的基本特征。

3 掌握发电机组起励建压,并网,接列和停机的操作。

二 原理说明

在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。 装于原动机上的编码器蒋转速信号以脉冲的形式送入THLWT-3型微机调速装置,该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置,采用双闭环来调节原动机的电枢电压,最终改变原动机的转速和输出功率。

三 实验内容与步骤

1 发电机组起励建压

(1)先将试验台的电源插头插入控制柜左侧的大四芯插座(两个大四芯插座可通用)。接着依次打开控制柜的“总电源”,“三相电源”,“单相电源”的电源开关,再次打开试验台的“三相电源”“单相电源”开关。

(2)将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出呼呼的声音。

(3)按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定自动方式,开始默认方式为自动方式。

(4)按下THLWT-3型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机正在启动。当发电机组转速上升到1500rpm时,THLWT-3型微机调速装置面板上的增速灯熄灭,启动完成。

(5)当发电机转速接近或略超过1500rpm时,可手动调整使转速为1500rpm,即按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。按下THLWT-3型微机调速装置面板上的“+”或“—”键即可调整发电机转速。

(6)发电机起励键压有三种方式,课根据实验要求选定。一是手动起励键压,一是常规起励键压,一是微机励磁。发电机键压后的值可由用户设置,此处设定为发电机额定电压400v,具体操作如下。

由于我们组做的是手动起励键压,所以以下简单介绍一下起励键压。

1) 选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋

到“手动调压”,“励磁电源”旋钮旋到“他励”。

2) 打开励磁电源。将控制柜上的“励磁电源”打到开。

3) 键压。调节试验台上的“手动调压”旋钮。逐渐增大,直到发电机电压(线电压)

达到设定的发电机电压。

2发电机组停机

(1) 减小发电机励磁至0。

(2) 按下THLWT-3型微机调速装置面板上的“停止”键。

(3) 当发电机转速减为0时,将THLZD-2电力系统综合自动化控制柜上的“励磁电源”

打到“关”,“原动机电源”打到“关”。

3发电机组并网

(1) 首先投入无穷大系统,具体操作参见第一部分“无穷大系统”,将实验台上的“发

电机运行方式”切至“并网”方式。打开控制柜的“总电源”,“三相电源”和“单相电源”的电源开关。在打开实验台的“三相电源”和“单相电源”开关。

(2) 发电机与系统间的线路有“单回”和“双回”可选。根据实验要求选定一种,此

处选“单回”。即断路器QF1和QF3处于合闸状态,其他处断路器处于分闸状态。双回即断路器QF1 QF2 QF3 QF4和QF6处于合闸状态,其他处断路器处于分闸状态。

(3) 合上断路器QF7,调节自耦调节器的手柄,逐渐增大输出电压,直到接近发电机

电压。

(4) 投入同期表。将实验台上的“同期表控制”旋钮打到“投入”状态。

(5) 发电机组并网有三种方式,可根据实验要求选定。一是手动并网,一是半自动并

网,一是自动并网。为了保证发电机在并网后不进相运行,并网前应使发电机的频率和电压略大于系统的频率和电压。

由于我们组选用的是手动并网,以下简单说明一下手动并网。

1) 选定“同期方式”。将实验台上的“同期方式”旋钮“手动”状态。

2) 观测同期表指针的指针旋转。同期时,以系统为基准,fg>fs时同期表的相角指针顺

时针旋转,频率指针转到“+”的部分;Ug>Us时压差指针转到“+”。反之相反。Fg和ug表示发电机频率和电压,fs和us表示系统频率和电压。

根据同期表指针的位置,手动调整发电机的频率和电压,直至频率指针和压差指针指向0位置。表示频率差和压差接近于0,此时相角指针转动缓慢,当相角指针转至中央刻度时,表示相角差为0,此时按下断路器QF0的合闸按钮。完成手动并网。

4 发电机组发出有功和无功功率

(1)调节励磁装置,调整发电机组发出的无功,使Q=0.75kvar PF=0.8

1)手动励磁 调节THLZD-2电力系统自动化实验台上的“手动调压”按钮,逐渐增大励磁,知道打到要求的无功值。

(2)调节调速器,调整发电机组发出的有功,具体操作,多次按下THLWT-3微机调速装置“+”键。逐步增大发电机有功输出,使P=1kw

5发电机组解列

(1) 将发电机组输出的有功和无功减为0

1) 多次按下THLWT-3微机调速装置“—”,逐步较少发电机有功输出,直至有功接

近0。

2) 调节励磁,减小无功。多次按下THLWL-3微机励磁装置面板上的“—”,逐步较

少发电机无功输出,直至无功接近于0。

备注 在调整过程中,注意不要让发电机进相。

(2) 按下THLZD-2店林立系统综合自动化实验台上的断路器QF0的分闸按钮,将发

电机组合系统解列。然后发电机停机,具体参照实验内容发电机组停机。

6 发电机组组网运行

该功能是配合THLDK-2电力系统监控实验台而设定的。

(1) 将THLZD-2电力系统综合自动化实验台上的“发电机运行方式”切至“联网”

方式。

(2) 将THLZD-2电力系统综合自动化实验台左侧的电缆插头接入THLDK-2电力系

统监控实验台。

(3) 重复实验1发电机组起励键压步骤。

(4) 采用手动并网方式,将发电机组并入THLDK-2电力系统监控实验台上的电力网,

具体操作参见THLDK-2电力系统监控实验指导书。

四 实验体会与心得

首先,由于实验设备都是强电,所以在操作的时候一定要注意安全。一定要按照教程来,几个人一起相互监督才能操作,安全才是最重要的。

该实验平台由电力系统微机监控实验系统和电力系统综合自动化实验台组成。它结合了电力监控系统的实际,是一套高度自动化,开放式的多机电力网综合实验装置。它充分展示现代电能的生产传输分配和使用的全过程,实现电力系统的检测控制监控保护调度的自动化,具有电力系统四遥功能。在我看来,其主要目标就是要实现电力从生产到供应的时效最短化、安全最大化和运行成本最小化。做了几次实验,觉得对这些知识理解的更透彻了。

实验二手动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件。

2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。

3.熟悉同步发电机手动准同期并列过程

二、原理说明

在满足并列条件的情况下,只要控制得当,采用准同期并列方法可使冲击电流很小且对电网 扰动甚微,故准同期并列方式是电力系统运行中的主要并列方式。准同期并列要求在合闸前通过

调整待并发电机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”, 由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲

击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

依并列操作的自动化程度,又可分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映发 电机组与系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频

率的两方波电压间相角差的变化规律,其波形为三角波。它能反映电机组与系统间的频率差和相

角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸 时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整 定。准同期控制装置根据给定的允许压差和允许频差,不断地检测准同期条件是否满足,在不满

足要求时,闭锁合闸并且发出均压、均频控制脉冲。当所有条件均满足时,在整定的越前时间送

出合闸脉冲。

三、实验内容与步骤

选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将 “励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“手动”位置。微机励

磁装置设置为“恒Ug”控制方式。

1.发电机组起励建压,使n=1485 rpm;Ug=390V。(操作步骤见第一章)

将自耦调压器的旋钮逆时针旋至最小。按下QF7 合闸按钮,观察实验台上系统电压表,顺 时针旋转旋钮至显示线电压400V,然后按下QF1 和QF3 合闸按钮。

2.在手动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允 许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

⑴ 将实验台上的“同期表控制”旋钮打到“投入”状态。投入模拟同期表。观察模拟式同 期表中,频差和压差指针的偏转方向和偏转角度,以及和相角差指针的旋转方向。

⑵ 按下微机调速装置上的“+”键进行增频,同期表的频差指针接近于零;此时同期表的 压差指针也应接近于零,否则,调节微机励磁装置。

⑶ 观察整步表上指针位置,当相角差指针旋转至接近0 度位置时(此时相差也满足条件), 48

手动按下QF0 合闸,合闸成功后,并网指示灯闪烁蜂鸣。观察并记录合闸时的冲击电流 将并网前的初始条件调整为:发电机端电压为410V, n=1515 rpm,重复以上实验,注意观 察各种实验现象。

3.在手动准同期方式下,偏离准同期并列条件,发电机组的并列运行操作

本实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况;

⑴ 电压差、相角差条件满足,频率差不满足,在fg>fs 和fg<fs 时手动合闸,观察并记录实 验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,分别填入表3-3-5-1;注意:

频率差不要大于0.5Hz。

⑵ 频率差、相角差条件满足,电压差不满足,Vg>Vs 和Vg<Vs 时手动合闸,观察并记录 实验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,分别填入表3-3-5-1;注意:

电压差不要大于额定电压的10%。

⑶ 频率差、电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察 并记录实验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,注意:相角差不要大于30°。

四 注意事项

当出现发电机和电网相序不同时,则应停机,并把三相调压器啊旋转至零位。在确保断电的情况下,调换发电机或者电网三相电源任意二根端线以改变相序后,按前述方法重新起动MG。

实验三半自动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。

2.掌握半自动准同期装置的工作原理及使用方法。

3.熟悉同步发电机半自动准同期并列过程。

二、原理说明

为了使待并发电机组满足并列条件,完成并列自动化的任务,自动准同期装置需要满足以下 基本技术要求:

1.在频差及电压差均满足要求时,自动准同期装置应在恒定越前时间瞬间发出合闸信号, 使断路器在δe=0 时闭合。

2.在频差或电压差有任一满足要求时,或都不满足要求时,虽然恒定越前时间到达,自动 准同期装置不发出合闸信号。

3.在完成上述两项基本技术要求后,自动准同期装置要具有均压和均频的功能。如果频差 满足要求,是发电机的转速引起的,此时自动准同期装置要发出均频脉冲,改变发电机组的转速。

如果电压差不满足要求,是发电机的励磁电流引起的,此时自动准同期装置要发出均压脉冲,改

变发电机的励磁电流的大小。

同步发电机的自动准同期装置按自动化程度可分为:半自动准同期并列装置和自动准同期并 列装置。

半自动准同期并列装置没有频差调节和压差调节功能。并列时,待并发电机的频率和电压由 运行人员监视和调整,当频率和电压都满足并列条件时,并列装置就在合适的时间发出合闸信号。

它与手动并列的区别仅仅是合闸信号由该装置经判断后自动发出,而不是由运行人员手动发出。

三、实验内容与步骤

选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将 “励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“半自动”位置。微机

励磁装置设置为“恒Ug”控制方式;“手动”方式。

1.发电机组起励建压,使n=1480rpm;Ug=400V。(操作步骤见第一章)

2.查看微机准同期的各整定项是否为附录八中表4-8-2 的设置(出厂设置)。如果不符,则

进行相关修改。然后,修改准同期装置中的整定项:

“自动调频”:退出。

“自动调压”:退出。

“自动合闸”:投入。

注:QF0 合闸时间整定继电器设置为td-(40~60ms)。td 为微机准同期装置的导前时间设置,

出厂设置为100ms,所以时间继电器设置为40~60ms

3.在半自动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允 许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。

50

⑴ 观察微机准同期装置压差闭锁和升压和降压指示灯的变化情况。升压指示灯亮,相应操 作微机励磁装置上的“+”键进行升压,直至“压差闭锁”灯熄灭;降压指示灯亮,相应操作微

机励磁装置上的“-”键进行降压,直至“压差闭锁”灯熄灭。此调节过程中,观察并记录观察

并记录压差减小过程中,模拟式同期表中,电压平衡表指针的偏转方向和偏转角度的大小的变化

情况。

⑵ 观察微机准同期装置频差闭锁和加速和减速指示灯的变化情况。加速指示灯亮,相应操 作微机调速装置上的“+”键进行增频,直至“频差闭锁”灯熄灭;减速指示灯亮,相应操作微

机励磁装置的“-”键进行减频,直至“频差闭锁”灯熄灭。此调节过程中,观察并记录观察并

记录频差减小过程中,模拟式同期表中,频差平衡表指针的偏转方向和偏转角度的大小的变化,

以及相位差指针旋转方向及旋转速度情况。

⑶ “压差闭锁”和“频差闭锁”灯熄灭,表示压差、频差均满足条件,微机装置自动判断 相差也满足条件时,发出QF0 合闸命令,QF0 合闸成功后,并网指示灯闪烁蜂鸣。观察并记录

合闸时的冲击电流。

将并网前的初始条件调整为:发电机端电压为410V, n=1515 rpm,重复以上实验,注意观 察各种实验现象。

⑷ 发电机组的解列和停机。

四 实验心得与体会

进一步掌握了微机准同期装置压差闭锁和升压和降压指示灯的变化情况原因,以及微机准同期装置频差闭锁和加速和减速指示灯的变化情况。并对整个半自动准同期并网有了进一步的认识。

实验四 自动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。

2.掌握自动准同期装置的工作原理及使用方法。

3.熟悉同步发电机准同期并列过程。

自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能, 自动化程度大大提高。

微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组 的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。

微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的 励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑

励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有

利于平稳地进行并列。

三、实验内容与步骤

选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将 “励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。微机励

磁装置设置为“恒Ug”控制方式;“自动”方式。

1.发电机组起励建压,使n=1480rpm;Ug=400V。(操作步骤见第一章)

2.查看微机准同期各整定项是否为附录八中表4-8-2 的设置(出厂设置)。如果不符,则进

行相关修改。然后,修改准同期装置中的整定项:

“自动调频”:投入; “自动调压”:投入。

“自动合闸”:投入。

52

3.在自动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装 置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,

微机准同期装置控制合闸按钮进行合闸。

⑴ 微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表3-3-7-1、 3-3-7-2 和3-3-7-3 修改。

注:QF0 合闸时间整定继电器设置为td-(40~60ms)。td 为微机准同期装置的导前时间设 置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压

差、频差和相差闭锁与整定)等实验内容。

⑵ 操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,Ug=410V,n=1515 rpm, 待电机稳定后,按下微机准同期装置投入键。

观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应; 当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。

微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转灯光

整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。

微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应点亮

关系,以及与旋转灯光整步表灯光的位置。

注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸 。此时若 要再进行微机准同期并网,须按下“复位”按钮。

四 实验心得与体会 交流同步发电机与电网并联时要求,发电机的电压的幅值、频率、相位和相序都应该与电网相等,这样并网瞬间就不会对发电机产生电流冲击。

在完全满足发电机的电压的幅值、频率、相位和相序都应该与电网相等的条件下的并网操作称为准同期,意思是准确同期(又称为准同步)。由于准同期操作较难以实现,有的在并网操作时先通过并网电抗器与电网相连,等到发电机并网成功后再将并网电抗器切除。采用这种方法时,在保证相序一致的条件下,可以适当放宽发电机的电压的幅值、频率、相位与电网相等的条件,这种并网操作就称为非同期(或粗同期,或粗同步)。

实验五单机—无穷大系统稳态运行方式实验

一、实验目的

1.熟悉远距离输电的线路基本结构和参数的测试方法。

2.掌握对称稳定工况下,输电系统的各种运行状态与运行参数的数值变化范围。

3.掌握输电系统稳态不对称运行的条件、参数和不对称运行对发电机的影响等。

二、原理说明

单机-无穷大系统模型,是简单电力系统分析的最基本,最主要的研究对象。本实验平台建 立的是一种物理模型。

发电机组的原动机采用国标直流电动机模拟,但其特性与电厂的大型原动机并不相似。发电 机组并网运行后,输出有功功率的大小可以通过调节直流电动机的电枢电压来调节(具体操作必

须严格按照调速器的正确安全操作步骤进行!可参考《微机调速装置基本操作实验》)。发电机组

的三相同步发电机采用的是工业现场标准的小型发电机,参数与大型同步发电机不相似,但可将

其看作一种具有特殊参数的电力系统发电机。

实验平台给发电机提供了三种典型的励磁系统 :手动励磁、常规励磁和微机励磁系统,可 以通过实验台的转换开关切换(具体操作必须严格按照励磁调节装置的正确安全操作步骤进行!

可参考《微机励磁装置基本操作实验》)。

实验平台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷 大系统”采用大功率三相自耦调压器,三相自耦调压器的容量远大于发电机的容量,可近似看作

无穷大电源,并且通过调压器可以方便的模拟系统电压的波动。

实验平台提供的测量仪表可以方便的测量(电压,电流,功率,功率因数,频率)并可通过 切换开关显示受端和送端的P,Q,cosΦ。发电机组装设了功角测量装置,通过频闪灯可以直观,

清晰的观测功角(使用前请仔细阅读附录一“功角指示装置原理说明”,注:由于功角指示的指

针相对于频闪灯的发光静止,但实际是在高速运转,切勿用手触摸!),还可通过微机调速装置

测来测量功角。

三、实验内容与步骤

开电源前,调整实验台上的切换开关的位置,确保三个电压指示为同一相电压或线电压;发 电机运行方式为并网运行;发电机励磁方式为常规励磁,他励;并网方式选择手动同期。

1.单回路稳态对称运行实验

⑴ 发电机组自动准同期并网操作

输电线路选择XL2和XL4(即QF2 和QF4 合闸),系统侧电压US=300V,发电机组启机,建压,通过可控线路单回路并网输电。

⑵ 调节调速装置的增、减速键,调整发电机有功功率;调节常规励磁装置给定,改变发电 机的电压,调整发电机无功功率,使输电系统处于不同的运行状态,为了方便实验数据的分析和

比较,在调节过程中,保持cosΦ=0.8 US=300V 不变。观察并记录线路首、末端的测量表计

及线路开关站的电压值,计算、分析和比较运行状态不同时,运行参数(电压损耗、电压降落、

沿线电压变化、无功功率的方向等)变化的特点及数值范围,记录数据于表3-4-1 中。 注:在调节功率过程中发电机组一旦出现失步问题,立即进行以下操作,使发电机恢复同 步运行状态:操作微机调速装置上的“-” 减速键,减少有功功率;增加常规励磁给定,提高

发电机电势;单回路切换成双回路。

⑶ 发电机组的解列和停机

保持发电机组的P=0,Q=0,此时按下QF0 分闸按钮,再按下控制柜上的灭磁按钮,按下微 机调速装置的停止键,转速减小到0 时,关闭原动机电源。

⑷ 实验台和控制柜设备的断电操作

依次断开实验台的“单相电源”、“三相电源”和“总电源”以及控制柜的“单相电源”、“三相电源”和“总电源”。

2.双回路对称运行与单回路对称运行比较实验

实验步骤基本同按实验内容⒈,只是将原来的单回线路改成双回路运行。观察并记录数据于 表3-4-1 中,并将实验结果与实验⒈进行比较和分析。

3.单回路稳态非全相运行实验

输送单回路稳态对称运行时相同的功率,此时设置发电机出口非全相运行(断开一相),观 察并记录运行状态和参数变化情况。

⑴ 发电机组自动准同期并网操作

实验步骤同实验内容⒈55

⑵ 单回路稳态非全相运行

① 微机保护定值整定:电流Ⅰ段“投入”,电压闭锁和方向闭锁“退出”,整定动作电流为

2 倍稳态运行时的动作电流,动作时间0.5 秒,重合闸时间90 秒;其它保护均退出。(保护定值

的设定方法请查看附录六“TSL-300 微机线路保护装置使用说明”)

② 操作短路故障设置按钮,设置单相接地短路故障,设置短路持续时间为10 秒(具体操作 可以参考实验指导书第一部分关于短路故障设置的详细说明)。

③ 将短路故障投入,此时微机保护切除故障相,准备重合闸,即只有一回线路的两相在运 行。观察此状态下的三相电流、电压值,记录在表3-4-2 中,将实验结果与实验1 进行比较;(备注:由于实验台的有功功率表和无功功率表只能测量三相平衡状态下的有功功率和无功功率值,所以在非全相运行状态下,有功功率和无功功率值应从微机励磁装置中读出)。 ④ 断相运行90 秒后,重合闸成功,系统恢复到单回路稳态运行状态。

⑶ 发电机组的解列和停机以及实验台和控制柜设备的断电操作

实验步骤同⒈-⑶、⑷。

四 实验心得与体会

在我看来同步发电机在电力系统中为稳定运行时,由于原动机输入的机械功率和发电机本身的损耗及输出的电磁功率相平衡,发电机以同步转速和恒定的转子角稳定运行。当系统遭受一大的扰动时,如发生短路时或负荷的突变等,发电机的输出功率也相应发生突变,由于原动机的调速装置有相当的惯性,必须经过一定的时间才能调整原动机的输出功率。因此,破坏了发电机与原动机之间的功率平衡,在机组轴上出现了不平衡转距,从而使发电机的转速和功角发生变化,引起整个电力系统的机电瞬变过程,甚至可能使发电机失步。瞬时稳定问

题就是讨论同步发电机在电力系统遭受巨大的扰动之后,是否还能维持同步运行的问题。

实验六单机无穷大系统稳态实验:

一、 整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影

响,并对实验结果进行理论分析:

实验数据如下:

电力系统实验报告

由实验数据,我们得到如下变化规律:

(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;

(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;

(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。

二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:

(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)

(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;

发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:

1、影响简单系统静态稳定性的因素是哪些?

答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

2、提高电力系统静态稳定有哪些措施?

答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。主要措施有:

(1)、减少系统各元件的电抗:减小发电机和变压器的电抗,减少线路电抗(采用分裂导线);

(2)、提高运行电压水平; (3)、改善电力系统的结构; (4)、采用串联电容器补偿; (5)、采用自动励磁调节装置; (6)、采用直流输电。

3、何为电压损耗、电压降落?

答:电压损耗指的是输电线路首末两端电压的数值差; 电压降落指的是首末两端电压的相量差。 4、“两表法”测量三相功率的原理是什么?它有什么前提条件?

答:原理:在测A、B、C三相总功率时,可以用两只功率表接在AB及BC间,测得的值相加即可。功率表的测量原理是测得电压、电流及其功率角,然后由P=UIcosΦ得到功率的大小,该种接法测得的是线电压、线电流及其夹角,相对于相电压相电流之间夹角而言,增加了120°,若相角为0°,则总功率P=3UI,采用两表发测得的功率为P=2UIcos120°√3=3UI,所以可以用两表法测得。

前提条件:在负荷平衡的三相系统中可以用两表法测三相功率----三相

三线系统可以用两表法测量,但是三相四线系统只有在三相平衡时才可以采用两表法。

实验七电 力 系 统 暂 态 稳 定 实 验

一、.整理不同短路类型下获得实验数据,通过对比,对不同短路类型进行定性分析,详细说明不同短路类型和短路点对系统的稳定性的影响。

各种短路类型获得的实验数据如下:

表5-1

单相接地短路

电力系统实验报告

电力系统实验报告

电力系统实验报告

通过对比,我们可以看出同样的短路故障切除时间在不同短路类型下对系统

稳定性的影响不一样:

不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变系统阻抗,影响系统输出功率,使之与正常运行情况下的输出有差别,影响功角,进而影响系统的稳定性。由于不同短路情况下的附加电抗不一样,所以影响也不一样。单相接地时附加电抗为负序电抗和零序电抗之和,两相短路时附加电抗为负序电抗,两相接地短路时附加电抗附加电抗为负序电抗与零序电抗并联。

由等面积定则可以得到,保持暂态稳定的条件是最大减速面积大于加速面积,附加电抗越大,故障时的功率特性曲线离原动机输出越远,在相同切除时间时,加速面积较大,极限切除角减小,相当于暂态稳定性降低。

二、通过试验中观察到的现象,说明二中提高暂态稳定的措施对系统稳定性作用机理。

答:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输出功率来不及变化,两者失去平衡,发电机转子将加速。

强行励磁可以提高发电机的电势,增加发电机的输出功率,即可使原动机输出与发电机输出功率平衡,可以有效地减小失步引起的不利影响。且强行励磁的速度越快、强励倍数越大,效果越好。

电力系统中的短路故障大多是由网络放电造成的,是暂时性的,在切断线路经过一段电弧熄灭和空气去游离的时间轴,短路故障便完全消除了。这时,如果再把线路重新投入系统,它便能继续正常工作。

所以采用自动重合闸装置,用微机保护装置切除故障线路后,经过延时一定时间将自动重合原线路,从而恢复全相供电,即可提高了故障切除后的功率特性曲线,即提高系统的暂态稳定性。

三、思考题:

1.不同短路状态下对系统阻抗产生影响的机理是什么?

不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变了系统阻抗:

(1)单相接地短路:以A相短路为例,由边界条件Ua=0、Ib=0、Ic=0,将它们用对称分量法分解,得到各序分量之间表示的边界条件,采用复合序网或结合各序等效电路分析,便可以得到其附加电抗X△=X2+X0;

(2)两相相间短路:以BC两相间短路为例,其边界条件为Ub=Uc、Ib+Ic=0、Ia=0,得到其附加电抗为X△=X2;

(3)两相接地短路:以BC两相接地短路为例,其边界条件为Ia=0、Ub=0、 Uc=0,得到其附加电抗为X△=X2//X0。

2.提高电力系统暂态稳定的措施有哪些?

答:(1)快速切除故障;

(2)采用自动重合闸;

(3)发电机快速强励磁;

(4)发电机电气制动;

(5)变压器中性点经小电阻接地;

(6)快速关闭汽门;

(7)切发电机和切负荷;

(8)设置中间开关站;

(9)输电线路强行串联补偿。

3.对失步处理的方法(注意事项3中提到)的理论根据是什么?

答:对失步处理的方法如下:通过励磁调节器增磁按钮,使发电机的电压增大;如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗;通过调速器的减速按钮减小原动机的输入功率。

其理论依据在于:

(1) 可以通过励磁调节器增磁按钮,使发电机的电压增大,在于:系统发

生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输出功率来不及变化,两者失去平衡,发电机转子将加速。而迅速增磁提高发电机的电势,可以增加发电机的输出功率,即可使原动机输出与发电机输出功率平衡,可以有效地减小失步引起的不利影响;

(2) 如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减

小系统阻抗,原因在于:减小系统阻抗,可以使原动机所带负荷减少,即其转速相对降低,这样,在发生短路故障时,原动机和发电机的输出功率不平衡程度也相对减轻一些;

(3) 通过调速器的减速按钮减小原动机的输入功率也可以作为减小故障影

响,因为这也相当于减少转轴上的不平衡功率。

4.自动重合闸装置对系统暂态稳定的影响是什么?

答:自动重合闸装置即是开关设备自动进行重新投入输电线路的操作,只要该装置在极限切除角之前的功角处自动合闸,即可使系统保持暂态稳定。但是需注意一点,重合闸时间必须大于潜供电弧熄灭时间,一面是线路再次受到短路故障的冲击,可能会大大恶化系统的暂态稳定性甚至破坏整个系统的稳定。

更多类似范文
┣ 电力系统暂态上机计算课程设计报告 附程序 16400字
┣ 南昌大学电力系统分析实验报告2 3400字
┣ 川大电力系统自动装置实验报告 4100字
┣ 电力系统自动装置实验报告 4700字
┣ 更多电力系统实验报告
┗ 搜索类似范文