实验三 直流斩波电路的性能研究

实验三 直流斩波电路的性能研究

一.实验目的

熟悉降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)和升降压斩波电路(Boost-Buck Chopper)的工作原理,掌握这三种基本斩波电路的工作状态及波形情况。

二.实验内容

1.熟悉SG3525芯片。

2.降压斩波电路的波形观察及电压测试。

3.升压斩波电路的波形观察及电压测试。

4.升降压斩波电路的波形观察及电压测试。

三.实验设备及仪器

1.NMCL-22现代电力电子电路和直流脉宽调速实验箱。

2.双踪示波器。

四.实验方法

1.熟悉SG3525。

闭合开关S1,观察SG3525的13端子,将有方波输出。调节“脉冲宽度调节”电位器RP,可调节占空比。

2.按照实验箱上所示电路

(1)任意选择电阻、电感和电容,分别组成降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)和升降压斩波电路(Boost-Buck Chopper)。

(2)闭合开关S8,接通主电路。观察UPW输出的方波信号,记录占空比α。观察输入电压ui、输出电压u0的波形。

(3)改变负载R、电感L、电容C的值,观察电压ui和u0的波形有何变化。并据此判断各个器件值的大小。

(4)实验完成后,断开主电路电源,拆除所有导线。

五.注意事项:

实验过程当中先加控制信号,后加“主电路电源2”。(即,先合S1,后合S8。)

六.实验报告

记录在某一占空比D下,降压斩波电路中,输入电压ui波形,输出电压u0波形,计算Ui、Uo,并绘制降压斩波电路的Uo/Ui-α曲线,与理论分析结果进行比较,并讨论产生差异的原因。

 

第二篇:实验2 直流斩波电路的性能研究(六种典型线路)

实验二  直流斩波电路的性能研究

一、实验目的

(1)熟悉直流斩波电路的工作原理。

(2)熟悉各种直流斩波电路的组成及其工作特点。

(3)了解PWM控制与驱动电路的原理及其常用的集成芯片。

二、实验所需挂件及附件

三、实验线路及原理

 1、主电路

 ①、降压斩波电路(Buck Chopper)

降压斩波电路(Buck Chopper)的原理图及工作波形如图6-1所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图6-1b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:


式中t on为V处于通态的时间,t off为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。由此可知,输出到负载的电压平均值U O最大为U i,若减小占空比α,则U O随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

 

(a)电路图                                      (b)波形图

图6-1 降压斩波电路的原理图及波形

②、升压斩波电路(Boost Chopper)

升压斩波电路(Boost Chopper)的原理图及工作波形如图6-2所示。电路也使用一个全控型器件V。由图6-2b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为UiI1ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui) I1ton。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:

UiI1ton=(UO-Ui) I1toff

 

上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。

 

(a)电路图                                   (b)波形图

图6-2 升压斩波电路的原理图及波形

2、控制与驱动电路

控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图6-3所示,它采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相差、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。

 

 图6-3 SG3525芯片的内部结构与所需的外部组件

四、实验内容

(1)控制与驱动电路的测试

(2)两种直流斩波器的测试

五、思考题

(1)直流斩波电路的工作原理是什么?有哪些结构形式和主要元器件?

(2)为什么在主电路工作时不能用示波器的双踪探头同时对两处波形进行观测?

六、实验方法

    1、控制与驱动电路的测试

(1)启动实验装置电源,开启DJK20控制电路电源开关。

(2)调节PWM脉宽调节电位器改变Ur,用双踪示波器观测输出PWM信号的变化情况,并填入下表。

2、直流斩波器的测试(使用一个探头观测波形)

斩波电路的输入直流电压Ui由三相调压器输出的单相交流电经DJK20挂箱上的单相桥式整流及电容滤波后得到。接通交流电源,观测Ui波形,记录其平均值(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)

按下列实验步骤依次对两种典型的直流斩波电路进行测试。

(1)切断电源,根据DJK20上的主电路图,利用面板上的元器件连接好相应的斩波实验线路,并接上电阻负载,负载电流最大值限制在200mA以内。将控制与驱动电路的输出“V-G”、“V-E”分别接至V的G和E端。

(2)检查接线正确,尤其是电解电容的极性是否接反后,接通主电路和控制电路的电源。

(3)用示波器观测PWM信号的波形、UGE的电压波形、UCE的电压波形及输出电压Uo和二极管两端电压UD的波形,注意各波形间的相位关系。

(4)调节PWM脉宽调节电位器改变Ur,观测在不同占空比(α)时,记录Ui、UO和α的数值于下表中,从而画出UO=f(α)的关系曲线。

七、实验报告

(1)整理各组实验数据绘制各直流斩波电路的Ui/UO-α曲线,并作比较与分析。

(2)讨论、分析实验中出现的各种现象。

八、注意事项

(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。

(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路,在观测高压时应衰减10倍,在做直流斩波器测试实验时,最好使用一个探头。

相关推荐