实验6 热电偶特性实验

实验6 热电偶特性实验 

实验目的:了解热电偶的原理及现象

所需单元及附件:

-15V不可调直流稳压电源、差动放大器、F/V表、加热器、热电偶、水银温度计(自备)、主副电源

旋钮初始位置:F/V表切换开关置2V档,差动放大器增益最大。

实验步骤:

1.了解热电偶原理:二种不同的金属导体互相焊接成闭合回路时,当两个接点温度不同时回路中就会产生电流,这一现象称为热电效应,产生电流的电动势叫做热电势。通常把两种不同金属的这种组合称为热电偶。具体热电偶原理参考教课书。

2.解热电偶在实验仪上的位置及符号,(参见附录)实验仪所配的热电偶是由铜_康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它封装在双平行梁的上片梁的上表面(在梁表面中间二根细金属丝焊成的一点,就是热电偶)和下片梁的下表面,二个热电偶串联在一起,产生热电势为二者的总和。

3.按图4接线、开启主、副电源,调节差动放大器调零旋钮,使F/V表显示零,记录下自备温度计的室温。

图4

4.将-15V直流电源接入加热器的一端,加热器的另一端接地,观察F/V表显示值的变化,待显示值稳定不变时记录下F/V表显示的读数E。

5.用自备的温度计测出上梁表面热电偶处的温度t并记录下来。(注意:温度计的测温探头不要触到应变片,只要触及热电偶处附近的梁体即可)。

6.根据热电偶的热电势与温度之间的关系式:Eab(t,to)=Eab(t,tn)+Eab(tn,to)

其中:t ------热电偶的热端(工作端或称测温端)温度。

      tn------热电偶的冷端(自由端即热电势输出端)温度也就是室温。

      to------0℃

(1)热端温度为t,冷端温度为室温时热电势Eab(t,tn)=(f/v表显示读数E)/100*2(100为差动放大器的放大倍数,2为二个热电偶串联)。

(2)热端温度为室温,冷端温度为0℃时铜-康铜热电偶的热电势Eab(tn,to):查以下所附的热电偶自由端为0℃时的热电势和温度的关系(铜-康铜热电偶分度表),得到室温(温度计测得)时热电势。

(3)计算热端温度为t,冷端温度为0℃时的热电势,Eab(t,to)。根据计算结果,查分度表得到温度t。

7.热电偶测得温度值与自备温度计测得温度值相比较。(注意:本实验仪所配的热电偶为简易热电偶,并非标准热电偶,只要了解热电势现象)。

8.热电偶多点测温。将两台热电偶设备中热电偶正串,分别测得每一点的热电势,查分度表求出热端温度。

9.热电偶两点温差测量。将两台热电偶设备中热电偶反串,分别测得热电势,查分度表求出温度差。

10.实验完毕关闭主、副电源,尤其是加热器-15V电源(自备温度计测出温度后马上拆去-15V电源连接线),其它旋钮置原始位置。

思考题及实验报告要求:

1.整理数据,并分析误差。

为什么差动放器接入热电偶后需再调差放零点?

2.即使采用标准热电偶按本实验方法测量温度也会有很大误差,为什么?

铜-康铜热电偶分度表(自由端温度0℃)

 

第二篇:热电偶测温实验

                  K热电偶测温性能实验

一、实验目的

    了解热电偶测温原理及方法和应用。

二、基本原理

    热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。

三、需用器件与单元

    主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。

四、实验步骤

热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜), 偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。

从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。

热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0)

式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值;

      E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值;

      E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。

   例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢?

   解:由附录K热电偶分度表查得:

           E(t0',t0)=E(20,0)=0.798mV

已测得     E(t,t0')=32.7mV/10=3.27mV

故         E(t,t0)=E(t,t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV

热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。


1、在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图1示意图接线。

图1  K热电偶温度特性实验接线示意

2、调节温度传感器实验模板放大器的增益K=30倍:在图1中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实验模板的放大器输入端(单端输入:上端接mV,下端接⊥);用电压表(2V档)监测温度传感器实验模板中的Vo1,调节温度传感器实验模板中的RW2增益电位器,使放大器输出Vo1=60OmV,则放大器的增益K= Vo1/Vi=600/20=30倍。注意:增益K调节好后,千万不要触碰RW2增益电位器。

3、关闭主机箱电源,拆去应变传感器实验模板,恢复图30A接线。

4、测量热电偶冷端温度并进行冷端温度补偿:在温度源电源开关关闭(O为关,-为开)状态下,合上主机箱和调节仪电源开关并将调节仪控制方式(控制对象)开关按到内(温度)位置,记录调节仪PV窗的显示值(实验时的室温)即为热电偶冷端温度t0'(工作时的参考端温度);根据热电偶冷端温度t0'查附录K热电偶分度表得到E(t0',t0),再根据E(t0',t0) 进行冷端温度补偿-----调节温度传感器实验模板中的RW3(电平移动)使Vo2= E(t0',t0)*K= E(t0',t0)*30(用电压表2V档监测温度传感器实验模板中的Vo2)。

5、将主机箱上的转速调节旋钮(2—24V)顺时针转到底(24V),合上温度源电源开关,在室温基础上,可按Δt=5℃增加温度并且小于160℃范围内设定温度源温度值(设定方法参阅实验二十七,重复6、7、8、9步骤),待温度源温度动态平衡时读取主机箱电压表的显示值并填入表1。

表1  K热电偶热电势(经过放大器放大后的热电势)与温度数据

6、根据表30A数据画出实验曲线并计算非线性误差。实验结束,关闭所有电源。

注:实验数据V(mv)/k(增益)= E(t,t0)。

相关推荐