生物药剂学总结

名解

1、生物药剂学(biopharmaceutics):是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,及机体生物因素和药物疗效之间相互关系的科学。

2、吸收(absorption)/药物的吸收(absorption of drug):药物从用药部位进入体循环的过程。

3、分布(distribution):药物进入体循环后向各组织器官或者体液转运的过程。

4、代谢(metabolism)/生物转化(biotransformation):药物吸收过程或进入体循环后,受肠道菌或体内酶系统的作用,结构发生转变的过程。

5、排泄(escretion):药物或其代谢产物排出体外的过程。

6、药物转运(transport):药物的吸收、分布、排泄过程统称为转运。

7、处臵(disposition):分布、代谢和排泄过程统称为处臵。

8、消除(elimination):代谢与排泄过程药物被清除合称为消除。

9、膜转运(membrance transport):物质通过生物膜(或细胞膜)的现象称为膜转运。

10、被动转运(passive transport):是指存在于膜两侧的药物顺浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。

11、膜孔转运(membrance pore transport):药物通过含水小孔转运的过程。

12、载体媒介转运(carrier-mediated transport):借助生物膜上的载体蛋白作用,是药物透过生物膜而被吸收的过程成为载体媒介转运。

13、促进扩散(facilitated diffusion)/易化扩散:是指某些物质在细胞膜载体的帮助下,由膜高浓度侧向低浓度侧扩散的过程。

14、主动转运(active transport):借助载体或酶促系统的作用,药物从膜低浓度侧向高浓度侧的转运称为主动转运。

15、膜动转运(membrance mobile transport):是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程。

16、吞噬作用(phagocytosis):膜动转运中摄取的物质为大分子或颗粒状物称为吞噬作用。

17、胃空速率(gastric emptying rate):用来描述胃排空快慢的物理量。

18、肝首过效应(liver first pass effect): 药物进入体循环前的降解或失活称为“肝首过代谢”或肝首过效应。

19、溶出速率(dissolution rate):是指一定溶出条件下,单位时间药物溶解的量。

20、注射给药(parenteral drug delivery):注射给药或称注射给药法是指将无菌药液注入体内,达到预防和治疗疾病的目的。

21、肺部给药(pulmonary drug delivery)/眼部给药(ophthalmic drug delivery)

思考题

一、生物药剂学研究内容和目的是什么?

内容:(1)研究药物的理化性质与体内转运的关系;

(2)研究剂型、制剂处方和制剂工艺对药物体内过程的影响;

(3)根据机体的生理功能设计缓控释制剂;

(4)研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础;

(5)研究新的给药途径与给药方法;

(6)研究中药制剂的溶出度和生物利用度;

(7)研究生物药剂学的研究方法。

目的:正确评价药剂质量,设计合理的剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳的

治疗作用。

二、生物药剂学与制剂质量和临床用药的关系(同上目的)

生物药剂学为正确评价制剂质量和指导临床合理用药提供科学依据。

生物药剂学与制剂质量的关系:质量评价,处方筛选

生物药剂学与临床用药的关系:合理用药,保证药效,安全。

三、何为吸收?

吸收是指药物从给药部位进入体循环的过程。

四、试述生物膜的组成、结构、功能及其模式对药物吸收的关系。

组成:生物膜由膜脂、蛋白质和少量糖类组成。膜脂主要包括磷脂、糖脂和胆固醇三种类型。

结构:液体镶嵌模型。流动的脂质双分子层构成细胞膜的连续主体,蛋白质分子以不同的方式和不同的深度嵌入磷

脂双分子层中。

功能:使活细胞与周围环境间有选择地进行物质交换。

对吸收的关系:大部分药物透过细胞膜的方式为被动扩散。小分子水溶性物质通过微孔途径吸收,大分子通过类脂

途径吸收。

五、人体哪些部位给药兼有局部及全身两种作用?

口服给药:靶向制剂(局部),普通制剂(全身)

肌肉/皮下注射:局麻药(局部),皮试(局部),青霉素G(全身)

口腔粘膜给药:溃疡膜(局部),舌下片(全身)

皮肤给药:皮炎平(局部),肛泰(全身)

肺部给药:地塞米松(局部),全麻药(全身)

直肠与阴道给药:甘油栓(局部),阿司匹林栓(全身)

眼部给药及鼻粘膜给药一般用于局部,极少用于全身。

六、各举例说明之。药物以何种方式和途径透过下列部位生物膜(胃肠道、口腔、鼻腔、皮肤、眼角膜) 胃肠道:细胞通道转运、细胞旁路通道转运;

口腔:以被动扩散为主,低分子量的水溶性药物主要通过细胞间通道穿过口腔粘膜,一些脂溶性药物也能经细胞间透过黏膜吸收;

鼻腔:经细胞的脂质通道和细胞间的水性孔道;

皮肤:被动扩散;

眼角膜:角膜渗透和结膜渗透。

七、影响为肠道吸收的主要因素。

(一)生理因素:

1、消化系统因素:

(1)胃肠液的成分与性质;(2)胃排空和胃空速率;(3)肠内运行;(4)食物的影响;(5)胃肠道代谢作用的影响;

2、循环系统因素

(1)胃肠道血流速度;(2)肝首过效应;(3)淋巴循环;

3、疾病因素

(二)物理化学因素

1、解离度与脂溶性;2、溶出速率;3、药物在胃肠道中的稳定性;

(三)剂型因素

1、制剂处方;2、制备工艺。

八、药物转运机制中以被动转运为重要,何故?

1、药物从高浓度侧向低浓度侧的顺浓度梯度转运;

2、不需要载体,膜对药物无特殊选择性;

3、不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;

4、不存在转运饱和现象和同类竞争抑制现象。

九、何类药物在小肠转运过程中出现饱和现象,及部位特征,使此类药物在服用中应注意什么?

主动转运的药物会出现饱和现象,部位特征为小肠上端。

服用此类亚欧应注意饭后服用,一次剂量不宜过多,经吸收部位是速度应慢,不宜制成缓释制剂。

例如:维生素B2和胆酸。

十、一般药物以何种形式透过生物膜,进入血浆后主要以何种方式起作用?、

一般药物以脂溶性较高的未解离型透过细胞膜,进入血浆后主要以游离型起作用。

十一、药物油/水分配系数值不宜过大对吸收的意义何在?试举胃肠道与皮肤吸收为例。

通常药物的油水分配系数大,说明该药物的脂溶性较好,吸收率也大,但油水分配系数与药物的吸收率不成简单的比例关系。因为溶于脂质膜的药物对体液的亲和性很弱,难以从类脂膜中游离入水溶性体液中,使药物吸收率下降。 胃肠道:脂溶性太强的药物可因难以从类脂膜中游离入水溶性体液中,使药物吸收率下降,而且药物不可能在水溶性的胃液中溶解,故无法吸收。

皮肤:脂溶性强的药物容易透过角质层屏障,但脂溶性太强的药物难以透过亲水性的活性表皮和真皮层。

十二、影响胃排空速率的因素有哪些?哪些药物饱腹服用吸收反而好?

影响因素:1、食物理化性质;2胃内容物粘度、渗透压;3、食物的组成;4、药物的影响;5、其他因素。

一些在特定部位吸收的药物,胃空速率大反而吸收不好,如维生素B2在十二指肠主动吸收。还有某些对胃有刺激性的药物及在胃中吸收较多的药物。

十三、药物的溶出速率对吸收有何意义?有哪些影响溶出速率的因素?

意义:对难溶性药物而言,药物从固体制剂中溶出的速度很慢,尽管崩解分散过程很快,其吸收过程往往受到药物溶出速度的限制,溶出是难溶性药物吸收的限速过程。在这种情况下,药物在胃肠道内的溶出速度直接影响药物的起效时间、药效强度和作用持续时间。

影响因素:药物的溶解度;粒子大小;多晶型;溶剂化物。

十四、对溶解缓慢或难溶性药物为增加其吸收,可采用减小粒径(微粉化)的方法,但不适合于那些性质的药物?

1、引起胃部刺激的药物;2、突释引起中毒的药物(及治疗窗窄);3、药效剧烈的药物;4、粉碎或研磨使晶型改变的药物;6、粉碎后易吸水、氧化等性质不稳定的药物。

十五、药物的首过效应发生在体内哪些主要部位?何故?各举一例说明之,有何克服法?

首过效应发生在肝脏、胃肠道。因为药物在进入全身循环前,首先在胃肠道和肝脏进行代谢。胃肠道中胃酸,各种消化酶和肠道中菌群产生的酶对药物的代谢反应,会导致部分药物在肠道中代谢失活。进一步吸收入体内的药物经门静脉系统进入肝脏,部分药物又被肝脏药酶转化与组织成分结合,或随胆汁排出,是进入体循环的原型药物更加减少。

胰岛素经胃肠道会被水解,故制成注射剂;硝酸甘油的肝首过效应极强,故舌下含服。

克服:制成药物的衍生物或前体药物,提高药物稳定性。

利用制剂包衣技术也是防止药物胃酸中不稳定的有效措施。

改变给药途径,以避免首过效应,例如直肠给药等。

十六、何类药物选择淋巴系统吸收?药物淋巴转运有何特点及缺点?

大分子及不溶性颗粒。

特点:单向循环,大分子的脂溶性的药物可被吸收,不受肝首过效应的影响,通透性大。

缺点:淋巴管内淋巴液流速慢,吸收慢

十七、影响肌注吸收的主要因素有哪些?肌肉注射可能有哪些副作用?

影响因素:1、生理因素:血流速度越快洗手越快;2、药物的理化性质:油水分配系数适当,分子量小;

3、剂型因素:水溶液>水混悬液>油溶液>O/W型乳剂>W/O型乳剂>油混悬液;

十八、有哪些因素影响药物的透皮吸收?角质层水合作用,吸收促进剂及表面活性剂增加药物吸收的方法,机制如何?

影响因素:

1、生理因素;2、剂型因素:(1)药物的理化性质;(2)给药系统性质;3、透皮吸收促进剂4、离子导入技术 角质层水化能够改变皮肤的渗透性。当皮肤覆盖塑料膜或具有封闭作用的软膏后,水分和汗液在皮肤内积蓄,是角质层水化。细胞自身发生膨胀,结构的致密程度降低,药物渗透性增加,水溶性药物的促渗作用较脂溶性药物显著。皮肤水化对药物经皮吸收的影响与水化的程度和药物的性质有关。

透皮吸收促进剂的作用机制可能是作用于角质层的脂质双分子层,干扰脂质分子的有序排列,增加脂质的流动性,有助于药物分子的扩散。有些促进剂能溶解角质层的类脂,影响药物在皮肤的分配,或促进皮肤的水化而提高药物的透皮速率。

十九、对眼部药物吸收,粘度的作用是什么?

增加水溶液粘度,可以延长保留时间,减少流失,有利于药物与角膜接触,有利于药物透过。

二十、药物在肺泡部位吸收的速效性有哪些特征?

(肺部是血液与气体进行交换的部位,肺泡是半球状囊泡,成薄膜束状,由单层扁平上皮细胞构成,厚度仅0.1~0.5μm,细胞间隙存在致密的毛细血管。肺泡腔至毛细血管腔间的距离仅约1μm,是气体交换和药物洗手的良好场所。)巨大的肺泡表面积、丰富的毛细血管和极小的转运距离,决定了肺部给药的迅速吸收,而且吸收后的药物直接进入血液循环,无肝脏首过效应。

二十一、何为分布?

药物进入体循环后向各组织器官或者体液转运的过程。

二十二、表观分布容积表示什么?其上限值为何不能固定?

表观分布容积表示假设在药物充分分布的前提下,体内药物按血中同样浓度溶解时所需的体液总体积。

如果药物基本上不与血浆蛋白或组织相结合,则他们的表观分布容积接近于其真实的分布容积,并且不超过总体液。但这种理想状态几乎不存在,大多数药物与血浆蛋白和组织蛋白,或者于两者都有显著结合。导致表观分布容积具有不同的量值。所以没有上限。

二十三、影响分布的因素有哪些?

(一)血液循忧患与血管通透性的影响:

1、血液循环的影响(越快越好);2、血管通透性的影响(分子量越小越好);

(二)药物与血浆代白结合率的影响:

1、蛋白结合影响体内分布;2、蛋白结合影响药效;

(三)药物理化性质的影响

(四)药物与组织亲和力的影响

(五)药物相互作用的影响

二十四、影响药物向中枢神经系统转运的因素有哪些?

1、体内循环和血管通透性;

2、药物与血浆蛋白结合的能力;

3、药物的理化性质与透过生物膜的能力;

4、药物与组织的亲和力;

5、药物相互作用。

二十五、为什么说药物的蛋白结合是药物储存的一种形式?

药物与血浆蛋白结合是一种可逆过程,有饱和现象,血浆中药物的游离型和结合型之间保持着动态平衡关系。当游离型药物随着转运和消除使其浓度降低时,一部分结合性药物就转变成游离型药物,使血浆及作用部位在一定时间内保持一定的浓度。从这个意义上来说,药物与蛋白结合也是药物储存的一种形式。

二十六、为什么说药物的蛋白结合能影响药物的分布、转运速度以及作用强度等方面?

进入血液中的药物,一部分与血浆蛋白结合成为结合型药物,一部分在血液中呈非结合的游离型状态存在。通常只有游离型药物才能透过毛细血管向各组织器官分布,因此药物的血浆蛋白结合是影响体内分布的重要因素。

因为血管外体液中蛋白质浓度比血浆低,所以药物在血浆中的总浓度一般比淋巴液、脑脊液、关节腔液以及其他血管外体液的药物浓度高,血管外体液中的药物浓度与血浆中游离型浓度相似。因此药物的血浆蛋白结合是影响转运速度的重要因素。

药物效应的强度与持续时间取决于药物能否分布到作用靶并在受体周围维持一定的有效浓度。一般地,药物与血浆蛋白结合成为复合体后不能跨膜转运,药物的分布、代谢、排泄以及与相应受体结合继而发生药理效应都以游离形式进行,因此血中游离药物浓度的变化是影响药效的重要因素。且当应用蛋白结合率高的药物后,由于给药剂量增大时蛋白出现饱和或者同时服用另一种蛋白结合能力更强的药物后,由于竞争作用将其中一个蛋白结合能力较弱的药物臵换下来,这样都能够随着蛋白结合率下降导致药物体内分布急剧变动,从而引起药理作用显著增强。

 

第二篇:药剂学总结

第二章 液体制剂

【概述】 液体制剂:将药物以不同的分散方法和分散程度分散在适宜的分散介质中制成的液体形

态的制剂。 液体制剂的特点:

1. 吸收快,生物利用度高, 2. 给药途径广(内、外服), 3. 服用方便, 液体制剂的质量要求:

1. 溶液型液体制剂应澄明,乳浊液型或混悬液型制剂的粒子小而均匀,振摇时可均匀分散; 2. 浓度准确、稳定、久贮不变; 3. 分散介质最好用水; 4. 制剂应适口、无刺激性; 液体制剂分类:1)按分散系统分类

均相液体制剂:药物以分子、离子形式分散在液体分散介质中(真溶液)。低分子溶液、高分子溶液 非均相液体制剂:药物是以微粒或液滴的形式分散在液体分散介质中。溶胶剂、乳剂、混悬剂 2)按分散系统分类

均相液体制剂:药物以分子、离子形式分散在液体分散介质中(真溶液)。低分子溶液、高分子溶液 非均相液体制剂:药物是以微粒或液滴的形式分散在液体分散介质中。溶胶剂、乳剂、混悬剂 液体制剂常用溶剂:

(1)对药物具有较好的溶解性和分散性;

(2)化学性质稳定,不与药物或附加剂发生反应;

(3)不影响药效的发挥和含量测定; (4)毒性小、无刺激性、无不适的臭味。

5. 制剂应具有一定的防腐能力;

6. 包装容器大小适宜,便于病人携带和服

用。

4. 减少胃肠道刺激, 5. 稳定性差(降解、霉变), 6. 携带、运输不便。

1.增溶剂(Solubilizer):对于以水为溶剂的药物,增溶剂的最适 HLB 为 15 ~ 18 。常用的增溶剂为聚山梨

酯类和聚氧乙烯脂肪酸酯类等。

2.助溶剂(hydrotropy agent):助溶剂多为低分子化合物,不是表面活性剂。

3.潜溶剂(cosolvent):在混合溶剂中各溶剂达到某一比例时,药物的溶解度出现极大值,这种现象称为潜溶( cosolvency ),这种溶剂称潜溶剂。 4.防腐剂(Preservative)

液体制剂的防腐作用方式:蛋白质变性、竞争辅酶、增加通透性

优良防腐剂的条件:

①在抑菌浓度范围内无毒性和刺激性,用于内服的防腐剂应无异味

②抑菌范围广,抑菌力强; 常用的防腐剂

1、羟苯烷基酯类parabens,尼泊金类 : 酸性、中性溶液 C数?,抑菌作用?,溶解度? 混合使用 2、苯甲酸benzoic acid 、苯甲酸钠: 酸性溶液(pH3-5) 3、山梨酸sorbic acid: 酸性溶液 pH4,易被氧化 4、苯扎溴铵(新洁尔灭)系阳离子型表面活性剂 5、醋酸氯乙啶:又称醋酸洗必泰,为广谱杀菌剂

③在水中的溶解度可达到所需的抑菌浓度

④不影响药剂中药物的理化性质和药效的发挥 ⑤防腐剂也不受药剂中药物及其他附加剂的影响 ⑥性质稳定,不易受热和药剂 pH 值的变化而影响其防腐效果,长期贮存不分解失效。

矫味剂:

? 甜味剂---甜菊甙、糖精钠、阿司帕坦,亦称蛋白糖(糖尿病病人) ? 芳香剂:香料、香精—薄荷油

? 胶浆剂:海藻酸钠、阿拉伯胶、明胶、甲基纤维素、羧甲基纤维素钠等的胶浆 ? 炮腾剂:酸+NaHCO3 ? CO2

甜味剂 天然甜味剂:如蔗糖、单糖浆、矫味糖浆、甜菊苷

合成甜味剂:如糖精钠、阿司帕坦

芳香剂 天然香料:如薄荷水、桂皮水

人造香料:如苹果香精、香蕉香精

矫味剂

胶浆剂 天然:阿拉伯胶、琼脂、明胶

半合成:羧甲基纤维素钠、甲基纤维素

泡腾剂 枸橼酸、酒石酸 碳酸氢钠、碳酸钠

着色剂:

着色剂:改善外观,识别浓度、用法 天然色素 合成色素 (其它附加剂:抗氧剂、pH调节剂、 金属离子络合剂) 低分子溶液剂:

? 溶液型液体药剂系指药物以离子或小分子状态分散在溶剂中形成的均匀分散的液体药剂。 ? 溶液剂、芳香水剂、 糖浆剂 、 酊剂、醑剂、甘油剂、 涂剂 芳香剂:系指芳香挥发性药物(多为挥发油)的饱和或近饱和澄明水溶液。 醑剂(spirits):系指挥发性药物制成的浓乙醇溶液。

酊剂(tincture):药物用规定浓度乙醇浸出或溶解而制成的澄清液体制剂。用途:消毒防腐药,用于肤感染和消毒。

甘油剂(Glycerins)系指药物溶于甘油中制成的专供外用的溶液剂。用途:消毒防腐,用于口腔黏膜感染,牙龈炎、冠周炎及牙周炎的消炎。

涂剂(Paint):系指含药物的水性或油性溶液、乳状液、混悬液,供临用前用纱布或棉花蘸取并涂于皮肤或口腔黏膜的液体制剂。 如:复方碘涂剂。

高分子溶液剂

概念: 指高分子化合物溶解于溶剂中制成的均匀分散的液体制剂。 ◎以水为溶剂→亲水性高分子溶液剂,或胶浆剂

混悬剂中的助悬剂、乳剂中的乳化剂、片剂的包衣材料、血浆代用品、微囊、缓释制剂等都涉及高分溶液 ◎以非水溶剂→非水溶性高分子溶液剂 高分子溶液剂属于热力学稳定体系

性质:

? 高分子化合物的带电性(带正电的高分子水溶液:琼脂、血红蛋白、碱性染料(亚甲蓝、甲紫)、

明胶、血浆蛋白等;带负电的高分子水溶液:淀粉、阿拉伯胶、西黄蓍胶、鞣酸、树脂、磷脂、酸性染料(伊红、靛蓝)、海藻酸钠等。) ? 高分子化合物的水化作用 (盐析、絮凝) ? 胶凝性

? 亲水性高分子溶液具有较高的渗透压 ? 高分子溶液是粘稠性流动液体,常用作助悬剂

溶胶剂

概述:固体药物细微粒子分散在水中形成的非均匀状态的液体分散体系,又称疏水胶体溶液。粒径1-100nm。

性质:

1.光学性质

2.电学性质 电泳现象

3.动力学性质 布郎运动 4.稳定性 热力学不稳定体系

制备 分散法:胶体磨、超声 ; 凝聚法:物理、化学凝聚

混悬液

概述 指难溶性固体药物以微粒状态分散于分散介质中形成的非均匀的液体制剂。

(粒度0.5-10?m 、 非均相分散体系、 热力学不稳定、 动力学不稳定)

制成混悬剂的条件:

①不溶性药物需制成液体药剂应用;

②药物的剂量超过了溶解度而不能制成溶液剂; ③两种溶液混合由于药物的溶解度降低而析出固体药物或产生难溶性化合物;

④与溶液剂比较,为了使药物缓释长效。

⑤与固体剂型比较,为了加快药物的吸收速度,提高药物的生物利用度。

⑥固体剂型胃局部刺激性大的情况,可考虑用混悬剂。( 但对于毒剧药物或剂量太小的药物,为了保证用药的安全性.则不宜制成混悬剂应用。)

4)混悬剂的粘度应适宜,倾倒时不沾瓶壁; 5)外用混悬剂应易于涂布,不易流散; 6)不得有变质现象;

7)标签上应注明“用前摇匀”。 8)干混悬剂

混悬剂的质量要求

1) 药物本身化学性质应稳定,有效期内药物含量符合要求;

2)混悬微粒细微均匀,微粒大小应符合该剂型的要求;

3)微粒沉降缓慢,沉降后不结块,轻摇后应能迅速分散;

混悬剂的稳定性

粒子沉降:

Stock’s公式 V = 2 r2(? 1- ? 2)g / 9? 助悬剂: ? ?, (? 1- ? 2) ? 亲水性?,防止结晶转型 甘油、阿拉伯胶、MC、CMCNa 微粒的电荷、水化:

解离、吸附---荷电; 双电层---?电势; 电解质---絮凝,破坏 絮凝、反絮凝:

自由能正比表面积F=?A? 絮凝flocculation:表面积A? 絮凝剂:适当的电解质,如枸橼酸盐 结晶增长、转型(微粒的大小不同):

Ostwald Freundlich 方程:0.1um时,由小变大

研磨过程中药物会形成无定型,溶解过程,会从无定转为稳定型,析出结晶。 分散相的浓度、温度:

浓度?,稳定性?

温度变化影响混悬剂的溶解度、溶解速度、沉降速度、絮凝速度、破坏网状结构……

混悬剂的稳定剂

助悬剂:高分子助悬剂、低分子助悬剂、硅酸盐类、触变胶

润湿剂(HLB值7-11):如聚山梨酯类、聚氧乙烯脂肪醇醚类、聚氧乙烯蓖麻油类、磷酯类、泊洛沙姆等。(此外,乙醇、甘油等也可作润湿剂。 )

絮凝剂、反絮凝剂:电解质的种类、离子价数、用量; 枸橼酸(盐)、酒石酸(盐)等

混悬剂的制备方法

分散法:粗颗粒—粉碎—适宜粒度—分散于分散介质

凝聚法:物理凝聚法:醋酸可的松滴眼剂 ;化学凝聚法:胃肠道透视的 BaSO4

混悬剂的质量评定

1.微粒大小的测定:关系到质量、稳定性、药效、生物利用度。

2.沉降体积比的测定:指的是沉降物的容积与沉降前混悬剂的容积之比。评价稳定性、助悬剂、絮凝剂、处方设计。 F = V / VO = H / HO 3.絮凝度:评价絮凝剂、稳定性

乳剂 水相 --W 油相---O

概述 指的是两种互不相溶的液体,其中一种液体以液滴的形式分散在另一种液体中所形成的非均匀

相液体分散体系。(液滴0.1-100?m 、非均相分散体系、 热力学不稳定)

乳剂的基本组成 : W / O,O / W,W/O/W,O/W/O

乳剂的特点:

生物利用度高 ; 油性药物,剂量准确,服用方便; 掩盖药物的不良臭味 ; 靶向性

乳剂的类型:

? 普通乳 1~100 μ m 乳白色不透明液体

? 亚微乳 0.1~0.4 μ m 可静脉注射(常控制在 0.25~0.4 μ m ) ? 纳米乳 0.01~0.10 μ m 乳化剂

乳剂:水相、油相、乳化剂 (作用:降低表面张力、形成乳化膜)

乳化剂的基本要求:

1. 化能力强,形成稳定的乳化膜 2. 无毒、无刺激性(生理适应性) 3. 对pH、温度、其它成分 耐受

乳化剂的种类:

1. 表面活性剂类:阴离子型、非离子型 2. 天然乳化剂:

? O/W,亲水性强,粘度大(稳定剂),可

内服,

? 乳化能力弱(混合使用),需加防腐剂, ? 阿拉伯胶、西黄蓍胶、明胶。

3.固体微粒乳化剂:固体粉末吸附于油水界面

接触角?〈90?,O/W; ? 〉90 ?,W/O O/W →氢氧化镁、氢氧化铝、二氧化硅 4.辅助乳化剂:乳剂稳定性? 粘度? 、乳化膜强度? W

:海藻酸钠、西黄蓍胶、MC、CMC-Na O:蜂蜡、硬脂酸、单硬脂酸甘油酯、

W/O →氢氧化钙、氢氧化锌

乳化剂的选择:

混合乳化剂的选择:油相对HLB值的要求 1. 适应性?:W/O ? O/W 2. 乳化膜的牢固性? 3. 粘度? ,稳定性?

4. 非离子型乳化剂可混合使用, 5. 阴、阳离子型乳化剂不能混 6. 混合乳化剂HLB的计算

乳剂的形成理论:

稳定的乳剂:分散成微小的乳滴、提供乳剂稳定的必要条件 1)降低表面张力:

分散? ---表面积? ---表面自由能?

乳化剂---表面张力? ---表面自由能? ---稳定 乳化剂---制备过程中减少能量 1cm→6cm2 1μm →600000cm2 3)确定乳剂的类型:

基本的乳剂类型是W/O和O/W, 乳化剂的性质、HLB

2)形成牢固的乳化膜:阻止乳滴的合并

单分子乳化膜:表面活性剂类(强) 多分子乳化膜:天然乳化剂、粘度大 固体微粒乳化膜:硅藻土、氢氧化镁

乳化剂亲水、亲油性是决定乳化剂类型的主要因素。亲水性太大极易溶于水,反而是形成的乳剂不稳定。

乳剂的稳定性:

? 分层(乳析) 减少密度差、增加分散介质的黏度。 ? 絮凝:可逆的聚集 ?电位降低- - -电解质 ? 转相: 乳化剂的性质改变而引起的。 ? 合并与破裂:不可逆 ? 酸败:加入抗氧剂和防腐剂

乳剂的制备:

1.油中乳化法(干胶法)

油:水:胶 = 4:2:1 制成初乳后,再加其它物质 挥发油 2:2:1,液体石蜡3:2:1 2.水中乳化法(湿胶法) 油:水:胶 = 4:2:1 3.新生皂法:

制备过程中两相界面发生反应,生成乳化剂 植物油中的有机酸 + 碱——生成皂类乳化剂 硬脂酸、油酸 + 氢氧化钙、氢氧化钠、三乙醇胺 4.两相交替加入法:

每次少量加入W或O相 乳化剂的用量多时可采用此方法

5.机械法 6.微乳的制备 7.复合乳剂的制备

不同给药途径的液体药剂:

搽剂、涂膜剂、洗剂、滴鼻剂、滴耳剂、含漱剂、滴牙剂、灌肠剂、灌洗剂 、合剂()

第三章 灭菌制剂与无菌制剂 概述

灭菌:指用物理或化学等方法或除去所有致病和非致病微生物繁殖体和芽孢的手段。 灭菌法:是指将所有致病和非致病微生物的繁殖体和芽胞杀灭或除去的方法或技术。 无菌:指在任一指定物体、介质或环境中,不得存在任何活的微生物。

无菌操作法:是将制备整个过程控制在无菌环境下进行操作的一种技术或控制技术。 消毒(disinfection):是指采用物理和化学方法将病原微生物杀死的技术。 防腐(antisepsis):系指用物理或化学方法抑制微生物的生长与繁殖的手段。

(药剂学中采取灭菌措施的基本目的是既要除去或杀灭微生物,又要保证药物的稳定性、治疗作用及用药安全。因此选择灭菌方法时必须结合药物的性质加以全面考虑。故灭菌法的研究对保证产品质量有着重要意义。所谓的菌就是微生物,包括细菌、真菌、病毒等。微生物的种类不同、灭菌方法不同,灭菌效果也不同,而灭菌制剂与无菌制剂是指直接注射于体内或直接用于创面、黏膜等的一类制剂) 定义:

灭菌制剂:系指采用某一物理、化学方法杀灭或除去所有活的微生物繁殖体和芽孢的一类药物制剂。 无菌制剂:系指采用某一无菌操作方法或技术制备的不含任何活的微生物繁殖体和芽孢的一类药物制剂。 灭菌与无菌技术的目的:

杀灭或除去所有微生物繁殖体和芽孢,最大限度地提高药物制剂的安全性,保护制剂的稳定性,保证制剂的临床疗效。

无菌操作法

化学灭菌法 气体灭菌法

灭菌法 化学药剂灭菌法

物理灭菌法 热灭菌法 干热灭菌法:火焰灭菌、干热空气灭菌法

湿热灭菌法

射线灭菌法 过滤除菌法

物理灭菌技术

热灭菌法:利用热能将微生物进行杀灭的灭菌技术。

加热可以破坏蛋白质与核酸中的氢键,导致蛋白质变性或凝固,核酸破坏,酶失去活性,致使微生物死亡。灭菌所需热量与灭菌量、灭菌时间、湿含量等有关。

火焰灭菌法 :

直接在火焰中烧灼灭菌的方法。灭菌迅速、可靠、简便,适用于耐火焰材质的物品,如金属、玻璃及瓷器等用具的灭菌,不适用于药品的灭菌。

干热空气灭菌法:

在高温干热空气中灭菌的方法。由于干燥状态下微生物的耐热性强,必须长时间受高热的作用才能达到灭菌的目的。一般认为繁殖性细菌在100℃以上干热1h即可被杀死,而耐热性细菌芽胞在140℃以上时才能使杀菌效率急剧增长。在180℃,灭菌2h或在260℃,灭菌45min对于细菌芽胞的杀菌能力如同繁殖体

干热空气灭菌法条件:

有的药典规定为135~145℃灭菌需3~5h;160~170℃灭菌需2~4h;180~200℃灭菌需0.5~1h。这只是一般标准,必须通过实验,在保证灭菌物品无损害的前提下指定完全灭菌的温度与时间。

本法缺点:穿透力弱,温度不易均匀,且灭菌温度较高,灭菌时间较长,不适于橡胶、塑料及大部分药品。