电力电子课程学习心得

前沿

在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用

电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT .

可控整流器与有源逆变器:

主要内容:

整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括:

(1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对整流电路工作情况的影响。

(2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念,并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。

(3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。

(4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的选取方法。

交-交变换器:

主要内容:

晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。

交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。

控制方法:

(1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。

(2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。

基本结构和工作原理

单相交-交变频电路由两组反并联的晶闸管整流器构成,和直流可逆调速系统用的四象限变换器完全一样,两者的工作原理也相似。

三相交-交变频器电路是由三组输出电压相位互差的单相交-交变频电路组成的。

改变反并联晶闸管的控制角,就可方便地实现交流调压。当带电感性负载时,必须防止由于控制角小于阻抗角造成的输出交流电压中出现直流分量的情况。过零触发是在电压零点附近触发晶闸管使其导通,改变晶闸管的通断比,以实现交流调压或调功。过零触发克服了移相触发有谐波干扰的不足。交-交变频不通过中间直流环节而把工频交流电直接变换成不同频率的交流电。根据控制角变化方式的不同,有方波型交-交变频器、正弦波型交-交变频器之分。交-交变频器的电流控制方式有“无环流控制”及“有环流控制”两种;交-交变频器效率较高;但输出电压的频率较低。

直流-直流变换器:

主要内容:

降压变换器、升压变换器、降压-升压变换器的拓扑结构、工作原理、在电流连续和断续模式下的各物理量之间的函数关系;全桥式直流-直流变换器在单极性和双极性控制方式时的工作原理;影响直流-直流变换器输出电压纹波的因素;几种不同变换器的开关利用率。

本次讨论了几种主要型式的直流-直流变换器的拓扑结构。除了全桥式直流-直流变换器以外,其他变换器只能在电压-电流相平面的单象限运行,即功率只能单方向传递。而全桥式直流-直流变换器可以在四个象限运行。

直流-直流变换器也称为斩波器,通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。

直流-直流变换器主要有如下几种基本型式:

1. 降压直流-直流变换器(Buck Converter)

2. 升压直流-直流变换器(Boost Converter)

3. 降压-升压复合型直流-直流变换器(Buck- Boost Converter)

4. 丘克直流-直流变换器

5. 全桥式直流-直流变换器(Full Bridge Converter)

直流-直流变换器的控制

基本的直流-直流变换器和它的输出波形

开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。输

出电压波形如上图所示,输出电压的平均值Uo为

式中 Ts—开关周期

D—开关占空比,

改变负载端输出电压有3种调制方法:

1.开关周期Ts保持不变,改变开关管导通时间ton。也称为脉宽调制(PWM)。

2.开关管导通时间ton保持不变,改变开关周期Ts。

3. 改变开关管导通时间ton,同时也改变开关周期Ts。

方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有较好的滤波效果。 给定电压与实际输出电压经误差放大器得到误差控制信号uco,该信号与锯齿波

信号比较得到开关控制信号,控制开关管的导通和关断,得到期望的输出电压。

锯齿波的频率决定了变换器的开关频率。一般选择开关频率在几千赫兹到几百千赫之间。

直流-直流变换器有两种不同的工作模式:

1. 电感电流连续模式

2. 电感电流断续模式

在不同的情况下,变换器可能工作在不同的模式。因此,设计变换器和它的控制器参数时,应该考虑这两种不同的工作模式的特性。

降压变换器

降压变换器也称为Buck变换器,正如名字所定义的,降压变换器的输出电压Uo低于输入电压Ud。

在实际应用中,有如下问题:

1.实际的负载应该是感性的。即使是阻性负载,也总有线路电感,电感电流不能突变,因此,图4-1的电路可能由于电感上的感应电压毁坏开关管。采用图4-3的电路,则电感中储存的电能可以通过二极管续流释放给负载;

2.在大多数应用中需要的是平稳的直流电压。而图4-1的电路输出电压在0和Ud间变化。采用由电感和电容组成的低通滤波器可以得到平稳的输出电压。

升压变换器

升压变换器也称为Boost变换器。正如名字所指的,升压变换器的输出电压总是高于输入电压。

当开关管导通时,输入电源的电流流过电感和开关管,二极管反向偏置,输出与输入隔离。当开关管断开时,电感的感应电势使二极管导通,电感电流iL通过二极管和负载构成回路,由输入电源向负载提供能量。在下面的稳态分析中,输出端的滤波电容器被假定为足够大以确保输出电压保持恒定,即uo= Uo。

在uco<utri,且-uco<utri,负载电流经VDA-和VTB-续流,使VTA-不能导通,uo=0,同时电流下降,由于电流较小,续流过程中,电流会下降为0,VDA-断开,VTA-导通,负载电流经VTA- 和VDB-构成电流回路,电流变负。

当uco>utri,使VTA-断开,触发VTA+,由于电感电流不能突变,因此负载电流经VDA+和VDB-续流,使VTA+不能导通,uo=Ud,同时电流上升,直至电流上升到0,VDA+和VDB-断开,VTA+和VTB-导通。

当-uco>utri,使VTB-断开,触发VTB+,由于电流不能突变,因此负载电流经VTA+和VDB+续流,使VTB+不能导通,uo=0,同时电流下降,由于电流小,电流会下降到0, VDB+断开,负载电流经VTB+ 和VDA+构成电流回路,电流变负;

直至-uco<utri,使VTB+断开,触发VTB-,由于电感电流不能突变,因此负载电流经VDA+和VDB-续流,使VTB-不能导通,uo=Ud,同时电流上升,直至电流上升到0,VTA+和VTB-导通。由此循环往复周期性的工作。

直-交变换器 :

主要内容:

直流变交流变换器是指能将一定幅值的直流输入电压(电流)变换成一定幅值,一定频率的交流输出电压(电流)。

软开关变换器

提高变换器工作频率可以减小变换器体积,但增加工作频率会大大增加变换器损耗,降低变换器效率,为了同时提高变换器效率和减小变换器体积,软开关

技术应运而生。所谓软开关技术,是指电力电子器件导通或关断时损耗为零的技术,与此相应若导通或关断时损耗不为零则为硬开关。

电力电子技术的应用领域主要有:

1.大功率直流电源。它的发展主要以提高单机容量和增加效率为主要目标。 电机控制。无论是交流电机还是直流电机均采用电力电子技术来完成电机的速度、转矩、跟随性等控制,但目前更多的是研究直流调速不能涉及的应用领域。

2.高压直流输电。电源变换。它的发展主要以增加效率和提高控制性能为主要目标,如电焊机、电磁感应加热、电动机车、电动汽车,电镀电源、电冰箱、洗衣机等控制。

3.无功功率补偿。

现代电力电子技术的发展方向

是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

 

第二篇:电力电子课程实践心得

本学期我们专业开设了电力电子技术这门专业课,在学习完课本上的知识以后,我们做了课程实践,课程实践是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。通过这次电力电子课程实践,我不仅巩固了在课本上学到的知识,而且还学到了很多课本之外的知识。在这次课程设计中我收获颇丰,无论是在培养自己的实验动手能力还是培养自己的性情方面。我明白了要去做好一个东西最重要的是心态,也许在你拿到题目时会觉得很困难,但是只要你充满信心,认真去思考,一步一个脚印去实现它,你就肯定会完成课程实践的。在实践的过程中,我也遇到了很多困难,发现我自己在学习课本上知识的时候并没有深刻的去理解,掌握的只是很浅显的东西,所以在时遇到很多以前在书本上没有遇到过的实际的问题,我就不知道该如何做了,尤其是接线的时候,只要一个小小的错误,就无法成功的完成实践的要求。我在以后的学习过程中一定会注意不能仅仅局限于书本上的知识,要懂得知识的扩展。同时我也认识到了理论与实际相结合的重要性,只有把所学的理论知识成功的应用到实践中去,我们才能学到很多课本上没有的知识,才能了解的更多的知识,那么我们的知识面才会拓宽,我们才能成功的提高自己的实际应用能力。在这次课程实践中,我也真正体会到合作的是非常重要的,当遇到问题时,可以找同学讨论一下,如果太难的问题还可以去问老师,我们会有很大收获的。我觉得做每一件事一定要持之以恒,不能遇到困难就轻易放弃,半途而废,我们要正视这些困难,用科学的态度去解决这些困难,获得属于自己的成功。

相关推荐