高中必修二生物知识点

、必修二知识梳理

基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫~。

语句:1、两对相对性状的遗传试验:① P:黄色圆粒X绿色皱粒→F1 :黄色圆粒→F2:9黄圆:3绿圆:3黄皱:1绿皱 。②解释:1)每一对性状的遗传都符合分离规律。2)不同对的性状之间自由组合。3)黄和绿由等位基因Y和y控制,圆和皱由另一对同源染色体上的等位基因R和r控制。两亲本基因型为YYRR、yyrr,它们产生的配子分别是YR和yr,F1的基因型为YyRr。F1(YyRr)形成配子的种类和比例:等位基因分离,非等位基因之间自由组合。四种配子YR、Yr、Yr、yr的数量相同。4)黄色圆粒豌豆和绿色皱粒豌豆杂交试验分析图示解: F1:YyRr→黄圆(1YYRR、2YYRr、2YyRR、4YyRr):3绿圆(1yyRR、2yyRr):黄皱(1Yyrr、2Yyrr):1绿皱(yyrr)。5)黄圆和绿皱为亲本类型,绿圆和黄皱为重组类型。3、对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)X yr →F2: 1 YyRr:1Yyrr :1yyRr :1 yyrr。4、基因自由组合定律在实践中的应用:1)基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。5、孟德尔获得成功的原因: 1)正确地选择了实验材料。2)在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。3)在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。4)科学设计了试验程序。 6、基因的分离规律和基因的自由组合规律的比较:①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;②等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;③等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;④细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合;⑤实 质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

第三节、性别决定与伴性遗传

名词:1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。观察染色体组型最好的时期是有丝分裂的中期。

2、性别决定:一般是指雌雄异体的生物决定性别的方式。

3、性染色体:决定性别的染色体叫做~。

4、常染色体:与决定性别无关的染色体叫做~。

5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做~。

语句:1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,近端着丝粒染色体,端着丝粒染色体。

2、性别决定的类型: (1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于“ZW”型。

3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。

4、人的正常色觉和红绿色盲的基因型(在写色觉基因型时,为了与常染色体的基因相区别,一定要先写出性染色体,再在右上角标明基因型。):色盲女性(XbXb),正常(携带者)女性(XBXb),正常女性(XBXB),色盲男性(XbY),正常男性(XBY)。由此可见,色盲是伴X隐性遗传病,男性只要他的X上有 b基因就会色盲,而女性必须同时具有双重的b才会患病,所以,患男>患女。

5、色盲的遗传特点:男性多于女性 一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。色盲基因不能由男性传给男性)。

6、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。

附:遗传学基本规律解题方法综述

一、仔细审题:明确题中已知的和隐含的条件,不同的条件、现象适用不同规律:

1、基因的分离规律:A、只涉及一对相对性状; B、杂合体自交后代的性状分离比为3∶1;C测交后代性状分离比为1∶1。

2、基因的自由组合规律: A、有两对(及以上)相对性状(两对等位基因在两对同源染色体上) B、两对相对性状的杂合体自交后代的性状分离比为 9∶3∶3∶1 C 、两对相对性状的测交后代性状分离比为1∶1∶1∶1。3、伴性遗传:A已知基因在性染色体上 B、♀♂性状表现有别、传递有别 C记住一些常见的伴性遗传实例:红绿色盲、血友病、果蝇眼色、钟摆型眼球震颤(X-显)、佝偻病(X-显)等

二、掌握基本方法:1、最基础的遗传图解必须掌握:一对等位基因的两个个体杂交的遗传图解(包括亲代、产生配子、子代基因型、表现型、比例各项) 例:番茄的红果—R,黄果—r,其可能的杂交方式共有以下六种,写遗传图解: P ①RR × RR ②RR × Rr ③RR × rr ④Rr × Rr ⑤Rr × rr ⑥rr × rr★

注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在▲一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即 一个来自父方,一个来自母方。

2、关于配子种类及计算: A、一对纯合(或多对全部基因均纯合)的基因的个体只产生一种类型的配子 B、一对杂合基因的个体产生两种配子(Dd D、d)且产生二者的几率相等 。C、 n对杂合基因产生2n种配子,配合分枝法 即可写出这2n种配子的基因。例:AaBBCc产生22=4种配子:ABC、ABc、aBC、aBc 。

3、计算子代基因型种类、数目: 后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积(首先要知道:一对基因杂交,后代有几种子代基因型?必须熟练掌握二、1)例:AaCc ×aaCc其子代基因型数目? ∵Aa×aa F是Aa和aa共2 种 [参二、1⑤] Cc×Cc F是CC、Cc、cc共3种 [参二、1④] ∴答案=2×3=6种 (请写图解验证) 4、计算表现型种类: 子代表现型种类的数目等于亲代各对基因分别独立形成子代表现型数目的乘积[只问一对基因,如二1①②③⑥类的杂交,任何条件下子代只有一种表现型; 则子代有多少基因型就有多少表现型]例:bbDd×BBDd,子代表现型=1×2=2种 , bbDdCc×BbDdCc ,子代表现型=2×2×2=8种。

三 基因的分离规律(具体题目解法类型) 1、正推类型:已知亲代(基因型或纯种表现型)求子代(基因型、表现型等),只要能正确写出遗传图解即可解决,熟练后可口答。

2、逆推类型:已知子代求亲代(基因型),分四步①判断出显隐关系②隐性表现型的个体其基因型必为隐性纯合型(如aa),而显性表现型的基因型中有一个基因是显性基因,另一个不确定(待定,写成填空式如A ?); ③根据后代表现型的分离比推出亲本中的待定基因 ④把结果代入原题中进行正推验证。

四、基因的自由组合规律的小结:总原则是基因的自由组合规律是建立在基因的分离规律上的,所以应采取“化繁为简、集简为繁”的方法,即:分别计算每对性状(基因),再把结果相乘。1、正推类型:要注意写清♀♂配子类型(等位基因要分离、非等位基因自由组合),配子“组合”成子代时不能♀♀相连或♂♂相连。

2、逆推类型:(方法与三2相似,也分四步)条件是:已知亲本性状、已知显隐性关系(1)先找亲本中表现的隐性性状的个体,即可写出其纯合的隐性基因型(2)把亲本基因写成填空式,如A?B?×aaB? (3)从隐性纯合体入手,先做此对基因,再根据分离比分析另一对基因(4)验证:把结果代入原题中进行正推验证。若无以上两个已知条件,就据子代每对相对性状及其分离比分别推知亲代基因型

五、伴性遗传:(也分正推、逆推两大类型)有以下一些规律性现象要熟悉:常染色体遗传:男女得病(或表现某性状)的几率相等。伴性遗传 :男女得病(或表现某性状)的几率不等(男女平等);女性不患病——可能是伴Y遗传(男

子王国);非上述——可能是伴X遗传;X染色体显性遗传:女患者较多(重女轻男);代代连续发病;父病则传给女儿。X染色体隐性遗传:男患者较多(重男轻女);隔代遗传;母病则子必病。

六、综合题:需综合运用各种方法,主要是自由组合。

所有的遗传学应用题在解题之后都可以把结果代如原题中验证,合则对,不合则误。 若是选择题且较难,可用提供的A—D等选项代入题中,即试探法;分析填空类题,可适当进行猜测,但要验证!2、测交原理及应用:①隐性纯合体只产生含隐性基因的配子,这种配子与杂合体产生的配子受精,能够让杂合体产生的配子 所携带的基因表达出来(表达为性状),所以,测交能反映出杂合体产生的配子 的类型和比例,从而推知被测杂合体的基因型。即:测交后代的类型和数量比 = 未知被测个体产生配子的类型和数量比。②鉴定某一物种(在某个性状上)是纯合体还是杂合体的方法:测交———后代出现性状分离(有两种及以上表现型),则它是杂合体;后代只有一个性状, 则它是纯合体。

七、遗传病的系谱图分析(必考):1、首先确定系谱图中的遗传病的显性还是隐性遗传:①只要有一双亲都正常,其子代有患者,一定是隐性遗传病(无中生有)②只要有一双亲都有病,其子代有表现正常者,一定是显性遗传病(有中生无)2、其次确定是常染色体遗传还是伴性遗传:①在已经确定的隐性遗传病中:双亲都正常,有女儿患病,一定是常染色体的隐性遗传;②在已经确定的显性遗传病中:双亲都有病,有女儿表现正常者,一定是常染色体的显性遗传病;③X染色体显性遗传:女患者较多;代代连续发病;父病则传给女儿。X染色体隐性遗传:男患者较多;隔代遗传;母病则子必病。2.反证法可应用于常染色体与性染色体、显性遗传与隐性遗传的判断(步骤:假设——代入题目——符合,假设成立;否则,假设不成立).

 

第二篇:高一必修1生物知识点总结

20xx/7/10

1.高尔基体可以合成糖类(在植物细胞中,可以形成细胞壁,与合成纤维素有关;动物细胞中主要是蛋白质的分拣,包装,运输。

主要功能:蛋白质糖基化 ,细胞分泌活动 ,膜的转化功能 ,水解蛋白为活性物质,参与形成溶酶体,植物细胞壁形成

2.化能合成:自然界中存在某些微生物,它们能以二氧化碳为主要碳源,以无机含氮化合物为氮源,合成细胞物质,并通过氧化外界无机物获得生长所需要的能量。这些微生物进行的营养方式称为化能合成作用。例如硝化细菌包括亚硝化菌和硝化菌。利用NH3和HNO2氧化所释放的能量合成有机物。硫细菌能够氧化H2S,把S积累在体内。环境中如果缺少H2S的话,这类细菌就把体内的S氧化成硫酸。铁细菌是能够氧化硫酸亚铁,并利用氧化释放的合成有机物的一类细菌。

就是说这些微生物利用硝化作用产生的能量进行化能合成合成有机物

3.电镜下观察到的细胞膜是暗-亮-暗

4.内质网:蛋白质的修饰与加工,合成

粗面内质网有核糖体,滑面内质网无核糖体

5关于细胞器的一些特定称呼

线粒体:动力车间 叶绿体:养料制造车间,能量转换站

内质网:细胞内蛋白质合成和加工,以及脂质合成的车间

核糖体:蛋白质的装配车间

6.大分子物质不能用被动和主动运输,只能采用胞吞,胞吐的方式进出细胞。 7动物细胞和低等植物细胞含有中心体

8有丝分裂过程动植物细胞区别:植物细胞的纺锤体是由两极发出纺锤丝形成的,而动物细胞的纺锤体是由中心体发出的星射线形成的;动物细胞形成子细胞的方式是细胞膜在细胞中央向内凹陷,一个细胞缢裂成两个细胞,植物细胞在分裂末期细胞中央出现细胞板,细胞板由中央向四周延展,最后演化成细胞壁,一个细胞分裂成两个细胞。

9在光学显微镜下能看到的细胞结构:如染色体、核仁、细胞膜,细胞壁,细胞质, 叶绿体(因为是绿色的),大液泡,细胞核(核仁),线粒体在肝切片里用詹纳斯绿染色后就光镜可见.。这些结构属于细胞的显微结构

10内质网,高尔基体,核糖体,溶酶体,中心体是亚显微结构,只有在电子显微镜下才能看见

1 / 2

11线粒体不能分解葡萄糖,其底物是丙酮酸

12酸化的重铬酸钾遇酒精由橙红色变灰绿色

13溴麝香草酚蓝水溶液可鉴定二氧化碳(CO2),溶液由蓝色变成绿色再变成黄色

14叶绿素的提取实验中,加入SiO2有助于研磨充分,加碳酸钙可防止色素被破坏

15脂肪可以被苏丹3染成橘黄色或被苏丹4染成红色

16ATP分子由一分子的腺苷、三分子磷酸基团组成(或1分子腺嘌呤和3分子磷酸基团和一分子核糖组成)

17人体细胞中红细胞只能进行无氧呼吸 18决定光合作用强度的两个重要内因:光合色素和酶

19光合作用光反应阶段有两个过程:①是水的光解,形成【H】和氧气;②是ATP的合成。所以,【H】是水光解的产物;而ATP的形成是把光能转化为不稳定化学能,与水的光解无关。注意ADP+Pi+能量→ATP+H2O中的H2O与水的光解是无关的。

20恒温动物:

温度低--耗氧量高

温度中--耗氧量中

温度高--耗氧量低

当温度低时,恒温动物要维持体温,这是就要有氧呼吸产生热来维持体温,当温度高时,就不用那么多用来维持体温的多余有氧呼吸了。

变温动物:

温度低--耗氧量低

温度中--耗氧量中

温度高--耗氧量高

当温度低时,新陈代谢缓慢,有氧呼吸不明显,温度高时,新陈代谢加剧,有氧呼吸增加。

2 / 2

相关推荐