篇一 :函数的单调性教学与反思

函数的单调性教学与反思

一.教学目的

1.理解函数的单调性,能判断和证明函数在给定的区间上的单调性;

2.体会从特殊到一般,简单到复杂,具体到抽象的研究学习方法;

3.渗透数形结合的数学思想.

二.教学重点、难点

重点:函数单调性的定义

难点:函数增减的数学符号语言表述,函数单调性的定义证明

通过观察一次、二次函数图像的升(降),形成增(减)直观的认识,比较具体函数图像升降与函数值的大小变化,认识函数值随自变量增大而增大(减小)的规律,由此得出增(减)函数的定义,从而突出了重点,再通过例2的讲解,归纳出用定义证明单调性的一般步骤,进而,突破了难点

三.教法学法分析

1、教法分析

遵循“教师的主导作用与学生的主体地位相统一的教学规律”,本节课采用引导发现式的教学法,并充分利用多媒体辅助教学。通过教师在教学过程中点拨,启发学生主动观察、思考、对手操作、自主探究来达到对知识的发现和接受。

2、学法分析

本节课所面对的是高一年级学生,这个时期的学生思维活跃,求知欲强,但在思维习惯上还有待老师指导,本节课从学生原有的知识和能力出发,教师带领学生创设疑问,通过合作交流、共同探索来寻求解决问题的方法。

…… …… 余下全文

篇二 :对“函数单调性”的教学反思

对“函数单调性”的教学反思

宜宾市四中 蔡礼军

反思性数学教学,又译为反省型数学教学,它是指教学主体借助行动研究不断探究与解决自身和数学教学目的以及数学教学工具等方面的问题,将“学会教学”与“学会学习”结合起来,努力提升数学教学实践合理性,使行为主体成为学者型数学教师的实践过程,数学教学过程遵循数学的规律和数学发展的要求。从审视数学课程标准的角度,可以看出,反思性数学教学关注“学会学习”与“学会教学”两个重要维度,引导教师和学生从关注个人已有经验的课堂行为,关注富于新理念的数学课堂设计发展到关注学生发展的行为调整。因此,数学教学反思的内容应当包括反思已有行为与新理念间的差距、反思理性的数学课堂设计与学生实际发展间的差距两个过程。在实际教学中,阻碍数学课程的发展的“瓶颈”是教师的素质。因此,反思性数学教学的实施与过程设计,需要与教师的素质提高相结合,这样更有利于促进教师的教学行为改善和发展。

数学概念是数学的逻辑起点,是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点,因此数学概念在数学学习与教学中具有重要地位。“函数单调性”是高一数学第一章《集合与函数》的重要内容,它是函数的基本性质之一,在高中数学里占有相当重要的地位。笔者从教多年,已经上过“函数的单调性”这一课多遍了。

…… …… 余下全文

篇三 :函数单调性教学反思(1)

《函数单调性》一课的教学反思:

1、本节课的教学流程如下:

一、引入课题

1.  观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

 

1 随x的增大,y的值有什么变化?

2 能否看出函数的最大、最小值?

3 函数图象是否具有某种对称性?

2.  画出下列函数的图象,观察其变化规律:

1.f(x) = x

       1 从左至右图象上升还是下降 ______?

       2 在区间 ____________ 上,随着x的增

大,f(x)的值随着 ________ .

 

2.f(x) = -2x+1

       1 从左至右图象上升还是下降 ______?

       2 在区间 ____________ 上,随着x的增

大,f(x)的值随着 ________ .

…… …… 余下全文

篇四 :函数单调性教学反思

对“函数的单调性”教学设计的改进和反思

215008 苏州市第五中学 罗强

高中数学新课程中,函数单调性的起始教学被安排在第二章《函数概念和基本初等函数Ⅰ》“§2.1.3函数简单性质”中,本文所研究的是“函数的单调性”的第一课时.

一、函数的单调性的教学聚集了数学教学的诸多矛盾

从高中数学知识体系的角度,函数单调性是高中阶段刻画函数“变化”的一个最基本的性质,函数单调性的学习和运用将贯穿在高中代数课程的始终,在教学要求上体现出螺旋上升的特征.高中数学课程中对于函数单调性的研究可以分为两个阶段:第一阶段,用运算的性质研究单调性,知其变化趋势;第二阶段,用导数的性质研究单调性,知其变化快慢.高一对函数单调性的学习处于第一个阶段,需要教师把握好教学要求,稳步推进,不能急于求成,超越阶段.

从学生学习的角度,函数的单调性是学生学习了函数概念后研究的函数的第一个性质,也是学生进入高中阶段后接触的第一个用数学符号语言刻画的数学概念,它的学习对学生来说具有一定的挑战性.同时,函数单调性的研究过程具有较好的示范性,可以为学生进一步学习函数的其他性质提供方法范例,对学生提升数学认识具有引领作用.由于函数单调性的学习既有重要价值,又有一定的难度,因此,在教学设计中,就需要教师在把握学生学情的基础上体现数学本质,有效突破教学难点.

…… …… 余下全文

篇五 :函数的单调性教学反思

《函数的周期性》教学反思:

成功之处:

    在备课的过程中,我们从学生出发,希望能够充分做到以学生为主体,顺应学的思维发展设置问题。定义的处理方法与旧教法有很大不同,用以往的教学办法可能就由教师直接将定义全盘脱出,之后解释定义,学生理解记忆,之后做较多的习题,比如:判断一个函数是否为周期函数,求一个函数的周期。整个过程,老师起到了传授的作用,重点放在了如何让学生听懂定义,利用定义解决一系列灵活的问题,以达至知合考试标准的要求。学生学会了效仿老师的做法,而记住解题的过程,而没有理解定义的实质。所在备课的时候我们从怎样能让学生自己理解着把定义完整的写出来,不用死记定义,就能够灵活的运用,记住的是问题的本质,而非现象。在这个目标下,我们又思考如何充份的调大家学习本节的积极性,让他想自己去解快这个抽象的问题,而非教师强加于他。所以我们引用了生活中的每隔7天星期数一致的周期现象以及由学生自己找到生活中其它的周期现象,激发了学习热情,从而自主的产生学生的好奇心。之后是为学生能够自由写出定义做准备工作的,我以正弦函数的周期性为例,对它的函数值的特点加以分析,再由特殊到一般的找到一般的周期函数的函数值应该满足什么条件,由学生讨论该如何给周期函数下定义,由具体函数特点到抽象函数特点,学生学会的是类比的方法及由特殊到一般的抽象和总结能力,远比他相仿老师的做法去解决问题要具有开拓性。

…… …… 余下全文

篇六 :函数单调性教学反思

《函数的单调性》教学反思

我把教学过程分为六部分:1、复习回顾2、创设情境,引入课题3、归纳探索,形成概念4、即时训练,强化新知5、思考总结,提高认识6、布置作业,课后反馈

1、复习回顾

复习前两节学习的函数概念,表示法等知识,为新课的展开做铺垫,扫清旧知不熟悉引起的障碍。

2、创设情境,引入课题

通过学生熟悉的实际问题“观察一天的气温变化图,说出气温在这一天内的变化。”引入课题。然后回忆初中一次函数和二次函数的图像,为概念学习创设情境,激发学生求知欲,调动学生的积极性。

3、归纳探索,形成概念

通过让学生观察函数单调性的直观图形和启发式提问,渗透数形结合的数学思想,实现学生从“形”到“数” 认识函数单调性的转换,从而得出单调增函数的概念。在这一过程中,教师的作用是引导、启发教师启发,使学生处于积极的思维状态,学会类比的思想,从而进入理解概念的新层次,突破重点,进而得出单调减函数的概念。

在概念生成的过程中,看图判断,紧扣定义,让学生通过讨论探究,学会看图判断函数的单调性和了解、掌握证明函数的单调性的几个关键步骤,从而突破重点难点。然后通过例题的讲解,适当延伸,深化认识,强化解题步骤,形成并提高学生的解题能力,进一步突破难点。

…… …… 余下全文

篇七 :函数的单调性教学反思

《函数的单调性》教学反思

在研究函数的性质时,函数的单调性是一个重要的内容,实际上,在初中学习函数时,已经重点研究了一些函数的性质,只是当初时研究较为粗略,未明确给出有关增减性的定义。对于函数增减性的判断也主要根据观察图象得出,而本小结内容,正是初中有关内容的深化和提高。由于函数图象是发现函数性质的直观载体,因此在本节教学时可以充分利用信息技术创设教学情境,以利于学生作函数图象,有更多的时间用于思考、探究函数的单调性,还要特别重视让学生经历这些概念的形成过程,以便加深对单调性的理解。

通过函数的单调性教学,我从以下方面对自己的教学作一个完整的反思,以便更好的发现不足之处,及时调整,让学生更好学习。

1、教学基本流程:

本节课的基本流程如下框图所示,整节课由浅入深,由具体到抽象,符合学生的认知规律。

从观察具体函数图象引入 直观认识增(减)函数 定量分析增(减)函数

                                                   

…… …… 余下全文

篇八 :函数单调性的教学反思

          函数单调性的教学反思

     为达到本节课的教学目标,突出重点,突破难点,我把教学流程设计为五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新

  单调性的概念是本节课的重点,而形成过程则是本节课的难点,为了突破这一难点,让学生能够充分感受单调性概念的形成过程,经历观察发现、抽象概括,自主建构单调性概念的过程,本节课设置了前三个环节,后两个环节的设计,是为了使学生对函数单调性认识的再次深化。

(一)创设情境,引入新课

  从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。

问题1:分别作出函数y=2x,y=-2x和y=x2的图象,并且观察函数变化规律。?

  首先引导学生观察两个一次函数图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.

?二次函数的增减性要分段说明,进而提出问题:二次函数是增函数还是减函数?

…… …… 余下全文