电工高级技师论文

电力变压器有载调压技术的新进展

【关键词】有载调压,电力变压器,分接开关

【论文摘要】介绍了变压器有载调压系统的现状与存在的问题,以及变压器有载调压技术的新进展,同时对三种典型的调压技术的动作原理和发展过程进行了分析和比较,并得出了一些有价值的结论。

在我国,变压器有载调压技术广泛用于配电系统,在发电厂的升压变压器中也有应用。其基本原理是从变压器某一侧的线圈中引出若干分接头,通过有载分接开关,在不切断负荷电流的情况下,由一分接头切换到另一分接头,以变换有效匝数,达到调节电压的目的。传统的有载调压变压器,采用机械式调压分接开关,存在许多问题,如产生电弧,动作速度慢,维护不便,故障率高等。我国目前普遍采用的机械式调压分接开关,对改善调压开关的特性,提高变压器有载调压的可靠性具有重要意义。

1 传统有载调压变压器

传统变压器有载调压装置采用机械式有载分接开关,其动作原理如图1所示(以双过渡电阻为例)。

图1中,在选择好分接头后,转换开关从左至右(或从右至左)切换。机械式开关的动作(包括其驱动齿轮 )容易导致操作性事故,降低了变压器的可靠性。机械开关在动作时,会产生一定的电弧,使开关的触点逐渐烧蚀,在操作一定次数后,必须更换触头,而且电弧的产生会导致变压器油质下降,造成变压器绕组的绝缘水平下降,导致匝间短路或相间短路。据统计,19xx年全国110~500 kV变压器事故中,有载调压分接开关的事故和故障分别占变压器各种总故障的18%和12.5%,500 kV变压器的57次故障中有载分接开关故障约占25%,事故和故障率高,而且有上升的趋势。由于机械式开关的动作时间长,一般为5 s,因此,传统有载调压变压器只用于稳态的电压调节。

2 新型有载调压变压器

针对传统有载调压变压器机械式开关存在的问题,各国研制出多种新型有载调压装置。按照其调压分接头的组成,新型有载调压变压器分为机械式改进型,辅助线圈型和电力电子开关型三类。

2.1 机械式改进型

机械式改进型有载调压变压器是在传统型的基础上加一电子开关电路变换而成。其分接开关只需1个过渡电阻和少量的晶闸管,通过电子开关电路和机械开关的配合,限制其操作过程中产生电弧,图2为其工作原理图。

图2中,A和B、C和D、E和F均是机械开关的触头,图3为电子开关实现电路。

图3中,1对反接的晶闸管接在机械开关的两端,1和4、2和3分别是2对机械开关的触头。以A—B电流从2—3支路流过,需要断开该开关支路为例:当断开2—3支路时,触头上的电压触发了晶闸管5或6,二极管D2提供门极电流,二级管D1用于防止反向门极电压,电流立即从1—4支路流过。由于电流过零时,晶闸管关断

,持续的电流不超过05个周期,同时,不会产生电弧。合上开关支路时,由于1—4支路是先合上的,晶闸管支路分得了一部分电流,2—3支路上的电弧被限制。这种调压装置的优点是不需要时间控制回路;晶闸管触发靠机械开关的操作完成;晶闸管的额定容量要求不高;晶闸管的失控不会损坏分接头和变压器。缺点是速度慢。

2.2 辅助线圈型六剑客职教园(最大的免费职教教学资源网站)

早在19xx年Arrillage就提出这种方法,图4为其最初的原理图。

图4可见,通过控制晶闸管S1的导通角,可叠加一可调电压到T1上。三相变压器T1和另一升压变压器T2相连,T2的一侧与T1的第三绕组通过1对反接的晶闸管开关S1相连。若晶闸管S1的触发无延时,即在过零时触发,电压则同相位地加到负荷上;若晶闸管S1的触发有延时,短路开关S2用来防止升压变压器T2开路。

之后,加拿大的Krishnamurthy在此基础上进行了改进,增加了辅助电压,以保证叠加的电压和原电压同相位。

与此同时,Siemens—Allis公司的Harlow等提出了另一种基于辅助线圈的有载调压变压器,以实现无弧操作。它主要包括1个可调0.625%额定电压的辅助线圈。将该耦合线圈接入,可调压0.625%,如图5示。图6是其具体的实现电路。

正常工作时(如图6所示),负荷电流通过S开关和B开关流过。以升高电压为例,它的动作过程是:(1)A接下触点,SCR1未导通,因而无电弧;(2)导通SCR1,此时有环流;(3)开断S,此时SCR2仍保持导通状态;(4)开断SCR2,电流被迫从A、SCR1支路流过; (5)B接下触点,SCR2未导通,因而无电弧;

(6)导通SCR2;(7)合开关S,无电弧,因SCR2处于导通状态。降压过程与此类似。整个过程均不产生电弧。

Arrillage及其改进方法的优点是操作简单,全由晶闸管实现;缺点是产生谐波,谐波的含量与晶闸管的触发角有关,以副方三次谐波为例,电流可达

2.5%,电压可达4%。

Siemens—Allis公司的方法可以实现无弧操作,但过程复杂,可靠性差。由于各开关按无弧标准设计,当SCR的触发脉冲发生故障时,开关将被烧毁。

2.3 电力电子开关型

随着电力电子技术的发展,晶闸管的容量及性能有了提高,使采用微处理器直接控制晶闸管电力电子开关的切换成为可能,无需利用机械开关辅助。通过选择适当触发时间,尽量减少晶闸管消耗的功率。目前,此技术还处于试验阶段。图7为其原理框图。

图7电力电子开关型原理图

图7可见,通过测量模块得到副方的电压和电流,计算出功角:选择在电压电流瞬时值同号时,切换晶

闸管,升高电压;或在电压电流瞬时值异号时,降低电压,以减少晶闸管环流。微处理器的引入,使调压变压器可根据系统电压的实际情况作故障处理,如微处理器检测到负荷电流突变,或者其他系统故障,选择限制晶闸管动作或将其闭锁。缺点是:雷电冲击对晶闸管的影响很大,极有可能损坏晶闸管;晶闸管本身的故障可能导致短路,以至更多的晶闸管故障。

2.4 三类新型有载调压变压器的比较

见表1。

从表1看出,三类调压方法各有优缺点。我国目前有关新型变压器有载调压技术的研究不多,如能借鉴国外的研究成果,根据各地的实际情况将现有的有载调压变压器进行改造,有载调压变压器的性能将得到提高。

3 结论

综上分析和比较,得出如下结论:

(1) 电力电子开关主回路结构的设计,应充分考虑晶闸管的耐压、可靠触发、散热、保护以及成本等问题,确保有载调压装置可靠,成本可接受,以便新型变压器有载调压技术的工业化生产和推广应用。

(2) 有载调压应该根据电力系统的实际运行状态进行动态调节分接头,避免故障下调压。研究表明,有载调压变压器在系统出现大扰动时动作,会导致系统的负荷过重,从而产生负调压效应,降低系统的稳定性 。因此,如何及时地诊断系统的故障,保证有载调压分接头能正确动作和闭锁,也是当前新型有载调压变压器亟待解决的问题。

(3) 随着电力电子技术特别是晶闸管技术的发展,我国广泛采用的传统机械式有载调压技术必将被新型的快速响应的无弧无冲击的电力电子调压技术所取代。

 

第二篇:电焊工高级技师论文

CO2气体保护焊的技术及应用

作者:罗勇

摘要:近几年焊接技术不断发展,尤其是熔化极气体保护焊发展十分迅速,本文主要叙述了CO2气体保护焊的技术及应用。

引言:

CO2气体保护焊俗称:二氧焊、二保焊、气保焊,是利用CO2气体作为电弧介质并保护焊接区电弧焊,属于熔化极气体保护焊,英文缩写(MAG或GMAW)19xx年前苏联研发。因工作效率高,生产成本低本,熔透性好、焊接变形小等优点故被广泛应用于工业制造。 CO2气体保护焊的优点:

1、工作效率高是手工焊的1-3倍最高可达到4倍。

2、生产成本低是手工焊的50%。

3、熔透性好开II破口时一次熔深可达到10mm,探伤合格率可达到95%

4、焊缝抗裂性好,因CO2气体是氧化性气体,由于氧化的作用,大

大降低了焊缝中氢的含量(氢是造成焊缝裂纹的主要原因之一)

5、焊接变形小,由于保护气体的压缩降低了焊接热输入(线能量)

降低了焊接变形。

CO2气体保护焊缺点:

1、设备比较复杂,价格较昂贵。

2、焊接飞溅较多,假如焊接电流、电弧电压、操作手法不正确时飞

溅十分严重,且清渣困难。

3、室外作业性差,当现场风速每秒超过2m是应作防护措施或停止

施焊。

4、氧化性大,只适合于碳素钢,低合金钢的焊接。

二氧化碳(CO2)气体保护焊的焊接技术:

一、 焊接设备:

交流弧焊机、整流弧焊机、直流逆变弧焊机等

二、焊接材料:

镀铜实芯焊丝、药芯焊丝两种

三、焊前准备:

1、焊接电流电、弧电压的调节:

根据焊接位置,焊接接结构母材厚度选择焊接电流。根据焊接电流选择电弧电压。

计算公式:(实芯焊丝)

焊接电流﹥300A时×0.04+20±2=电弧电压

焊接电流﹤300A时×0.05+16±2=电弧电压

药芯焊丝:

焊接电流﹥300A时×0.06+20±2=电弧电压

焊接电流﹤300A时×0.07+16±2=电弧电压

2、CO2保护气体流量调节:

电流﹥200A时气体流量15-20L,电流﹤200A时气体流量12-15L。 注:药芯焊丝焊接时,气体流量在15L即可,焊接电流,电弧电压配

合参数要求不十分高。实芯焊丝焊接时焊接电流,电弧电压参数配合必须十分准确,假如焊接电流大,电弧电压小时,焊丝无法融化,将会发出啪啦啪啦的响声,焊丝会整节整节的断裂,使焊缝无法成型。假如焊接电流小,电弧电压大时,焊接速度慢,焊接飞溅成大颗粒(清渣是十分困难),产生咬边等缺陷。

四、焊接操作:

1、运条:

(1)直线运条法:焊枪和焊件呈45-75°,焊枪不做摆动沿直线向前或向后移动。

适用范围:平角焊、立向下焊。

(2)、划半圆运条法:焊枪和焊件呈45-75°,焊枪作伴圆形运动并向前移动。

适用范围:平焊、平角焊、

(3)划圆运条法:焊枪和焊件呈45-75°,焊枪划圆形运动并向前移动。

适用范围:同划半圆运条相同。

(4)锯齿运条法:焊前和焊件呈60-85°,焊枪划锯齿形状运动并向前移动。

适用范围:开破口的平焊、立焊、仰焊。

注:运条方法分向前运条发、向后运条发两大类。

向前运条法适用于大电流、慢焊速的焊接。向后运条发适用于小电流、高焊速的焊接。

2、焊接过渡方法:

(1)短路过渡:焊丝和焊件以短路的形式连接在一起实现过渡。

短路过度焊接时焊接飞溅呈细小颗粒,清渣容易。

(2)潜弧射流过渡:熔敷金属以喷射的形式过渡到熔池中去。

潜伏射流过度,焊接时焊接飞溅同短路过度相似。

(3)熔滴过渡:熔敷金属以熔滴的形式过渡到熔池中去。

熔滴过度焊接时,焊接飞溅较少但颗粒较大,清渣困难。

五、焊接环境对焊缝成型的影响及防护办法:

1、工作现场风速每秒﹤2m时可不做防护措施,但是焊接方向要与风向相同(顶风焊接,如顺风焊接风“氧气”很容易进入熔池,将熔敷金属氧化。工作现场风速每秒﹥2m时要做防护措施或停止施焊。

2、工作现场空气相对湿度90%是要停止施焊。

3、工作现场温度低于-10℃时要对母材进行预热(有预热要求的焊件除外)工作温度低于-20℃是要停止施焊。

总结:

近几年二氧化碳气体保护焊由单一的CO2气体实芯焊丝,发展到混合气体药芯丝。被广泛应用于航天、航空、造船、机械制造等行业。 总之,每一道完美的焊缝,与焊接电流、电弧电压、焊接结构母材、焊接手法等都有着至关重要的关系。

参考文献:

1、刘云龙 焊工技师手册

2、陈裕川 焊接工艺手册

相关推荐