高层建筑给排水设计体会与总结

高层建筑给排水设计体会与总结

摘要: 一个项目的建设完成,跟优秀的设计、施工、管理是密不可分的,尤其是一个合理、完善的设计更为重要。本文项目设计实例,探讨高层建筑的给排水设计谈一些看法和体会。

关键词: 给水系统;排水系统;雨水系统;消火栓给水系统;自动喷水灭火系统

1.工程概况:

本工程总建筑面积约4万m2,占地面积约4800m2,建筑总高度99.6m。本项目的建筑主体由一栋24层高度不超过100m的高层塔楼和七层的裙房组成,1至7层为裙房、8-24层为办公用房,地下室三层,地下三层为人防及设备用房;地下一层及地下一层为停车库及设备用房,地上24层,一层为入口大堂及相关配套商业,二层为多功能厅及配套用房,三层为工业研发用房,四层为食堂及研发用房,五至二十五层均为工业研发用房。

2.给水系统:

2.1水源:

本工程生活及消防用水均由市政给水管网供给,两路供水,分别从科园路和滨海大道的市政管道上接入一条DN200给水接口,并在建筑周围形成DN200供水环网。

2.2给水系统竖向分区:

室内给水系统竖向分3个区,低区为地下三层至四层,由市政给水管网直接供给;中区为五层至十四层,由中区无负压给水设备供水;高区为十五层至二十五层,由高区无负给水设备供水,泵组设置部位:中区无负压管网增压稳流给水设备与高区无负压管网增压稳流给水设备设于地下三层生活水泵房内,各区生活用水最不利点水压不小于0.10Mpa,最低卫生器具处用水压力大于0.35Mpa时采用恒压式减压阀减压供水。

2.3管材及管道敷设:

2.3.1室外给水管采用钢丝网骨架增强塑料复合管;室内给水管采用纳米抗菌不锈钢复合管,密封采用O型硅橡胶,DN≤100采用双挤压式连接, DN>100采用沟槽式管件(卡箍)连接。

2.3.2给水立管在管道井内敷设,由建筑专业统一处理;给水支管在吊顶内或墙内暗敷,施工时应留槽。

2.3.3本建筑在市政接口处统一设置室外水表井。办公商业等给水水表设置在公共走道的水井中,采用远程电子抄表;其他用水点可根据甲方计量要求设置单独计量水表。

3.排水系统:

本建筑采用雨污分流的排水体制,排水接口为科园路上的市政预留排水接口。各排水立管根据排水量采用伸顶通气管、专用通气立管或环形通气管。

生活污水需经化粪池处理后排入市政排水管网,餐饮生活排水需经隔油池处理后才可排入排水管网。地下室设潜水泵,将水排入室外排水管网。

消防电梯井底的集水坑容积不小于2m3,潜水泵流量不小于10L/s。

管材:室内排水系统采用离心铸铁排水管,不锈钢卡箍连接;室外采用双壁波纹排水塑料管。

4.雨水系统:

采用深圳降雨强度公式,屋面雨水排水工程的总排水能力不应小于10年,降雨历时为5min,暴雨强度q5=5.25L/S.100m2。屋面雨水均由雨水斗收集后靠重力流排至室外弃流沉砂池,初期雨水弃流排放,通过弃流沉砂池处理后的雨水排至雨水收集箱,通过雨水收集箱处理后的水进过过滤处理后用于绿化灌溉,车库及道路的冲洗以及景观的补水使用。管材:室内雨水系统采用离心铸铁排水管,不锈钢卡箍连接;室外采用双壁波纹排水塑料管,雨水收集处理原理见图一:

5.消火栓给水系统:

5.1用水量:

室外消火栓给水系统:30L/s;室内消火栓给水系统:40L/s;火灾延续时间均为3小时。

5.2系统说明:

5.2.1室外消火栓系统:

与室外给水系统共用一套管网,并按不大于120m间距设置室外地上式消火栓,在此范围内的市政消火栓也为本建筑所用。由于本建筑只有一路市政供水管,故在地下一层设专门的室外消防水池以存储火灾延续时间的室外消防用水量。

5.2.2室内消火栓系统分区:

室内消火栓系统竖向分两个区,低区:地下三层至七层;高区:八层至二十五层。低区由消火栓泵供水、并由屋顶消防水箱稳压,供水管及稳压管均通过减压阀减压供水;高区由消火栓泵供水、并由屋顶消防水箱稳压箱。各区分别设有水平干管连接各消火栓立管,形成竖向及水平环网。

5.2.3消防水池及消防水箱:

地下二层室内消防水池存有火灾延续期间内的全部室内消火栓用水量、喷淋用水量,合计为540m3(分成两格),其中室内消火栓系统用水量为432m3;屋顶水箱间设有一座消防水箱,容积为18m3,供火灾初期的室内消火栓用水量、喷淋用水量。

5.2.4消火栓水泵控制要求:

室内消火栓泵:选用2台XBD14/40恒压切线泵 (1用1备)Q=144m3/h, H=140m, N=90kW,消防控制中心控制启停泵;消火栓箱处按钮启泵;地下消防水池达低水位时停泵。采用单阀单栓带自救式消防卷盘的消火栓箱,箱内设置消火栓泵启动按钮及指示灯,消火栓口径为DN65,水龙带长为25米,水枪喷嘴口径19mm。室内消火栓每支水枪最小流量为5L/s,立管最小流量为15L/s,充实水柱不小于13米,并保证室内任何部位都有两股充实水柱同时到达。室内消火栓系统高低区各设有三套地上式水泵接合器,每个流量15L/s。管材:室内消火栓给水系统采用内外壁热镀锌钢管,沟槽式连接件(卡箍)或丝扣、法兰连接。消火栓系统原理图如图二所示:

6.自动喷水灭火系统:

6.1用水量:采用湿式自动喷水灭火系统,设计用水量为30L/s,火灾延续时间1小时,火灾危险等级为中危险II级。

6.2分区说明:

为保证喷淋系统配水管道工作压力不大于1.2MPa,本工程喷淋系统分成高、低二区,低区:地下三层至七层;高区:八层至二十五层。低区由喷淋泵供水、并由屋顶消防水箱稳压,供水管及稳压管均通过减压阀减压供水;高区由由喷淋泵供水、并由屋顶消防水箱及稳压装置稳压。

6.2.3系统说明:

本建筑除建筑面积小于5m2的卫生间、塔楼敞开式外走廊、不宜水消防的部位外均设置喷淋系统。喷淋水泵控制要求:喷洒选用2台XBD15/30恒压切线泵(1用1备)Q=108(m3/h), H=150m, N=75kW,就地控制启停泵;消防控制中心控制启停泵;湿式报警阀处压力开关自动启泵(共8组,其中地下二层消防泵房内4组、七层4组);地下消防水池达低水位时停泵。消防水池及消防水箱:地下室消防水池存有火灾延续期间内的全部室内消火栓用水量、喷淋以用水量,合计为540m3(分成两格),其中喷淋系统用水量为108m3。屋顶水箱间设有一座消防水箱,容积为18m3,供火灾初期的室内消火栓用水量、喷淋用水量及水炮用水量。屋顶喷淋系统稳压装置,由两台小泵(一用一备)及一台气压罐组成。喷淋系统设计参数:喷水强度为8L/min.m2,作用面积为160m2,喷头工作压力不低于0.10Mpa,其中系统最不利点处喷头的工作压力不低于0.05Mpa。除厨房内喷头公称动作温度为93℃外,其余喷头的公称动作温度均为68℃,并根据建筑装修要求采用吊顶型或普通型玻璃球闭式喷头。净空高度大于800mm的闷顶和技术夹层内有可燃物时,应设置上喷喷头。当梁、通风管道、排管、桥架等障碍物的宽度大于1.2m时,其下方应增设喷头。在装设通透性吊顶的场所,喷头布置在顶板下。每层按防火分区设置水流指示器和电磁阀,湿式报警阀前的阀门采用电磁阀。电磁阀的开关状态显示在消防控制中心。每个湿式报警阀控制的喷头数不超过800个。喷淋系统设有3套地上式水泵接合器,每个流量15L/s。管材:采用内外壁热镀锌钢管,沟槽式连接件(卡箍)或丝扣、法兰连接。自动喷水灭火系统原理图如图三所示:

7.其它消防系统及灭火器配置:

7.1在发电机房、变配电间等处设有七氟丙烷洁净气体灭火系统。

7.2厨房烹饪操作间的排油烟罩及烹饪部位设置厨房设备专用灭火装置。

7.3本建筑地下室按中危险级A类与B类混合火灾设置手提式磷酸铵盐干粉灭火器,每具灭火器最小配置灭火级别为55B,最大保护面积为1.0m2/B,最大保护距离为12米;其余区域按严重危险级A类火灾设置手提式磷酸铵盐干粉灭火器,每具灭火器最小配置灭火级别为3A,单位灭火级别最大保护面积为50m2/A,最大保护距离为15米。

8.体会与总结:

8.1无负压供水设备的应用:

无负压供水工作原理:自来水管网的水通过进水管道部分进入稳流补偿罐,稳流补偿罐内空气通过负压消除器排出,直至罐内水满,设备通电置于自动工作状态。控制系统对设备进水总管压力与用户管网压力实时检测,并将压力信号转换为数字信号储存于寄存器中,与预先从触摸式人机界面设置的并储存于寄存器的压力设定值进行闭环运算,并将结果转换为模拟量以控制变频器的输出频率,控制水泵的运行转速,在市政供水量大于用户用水量时根据用户管网压力自动调节水泵转速,保证用户管网压力恒定;在市政供水量小于用户用水量时,及时调低水泵转速,控制供给用户的水量,确保给水设备不对市政管网产生。

采用无负压供水设备,从环保、节水、节能等方面与传统的供水方案相比,无负压供水设备不仅可节约一次性投资,而且运行费用低,供水质量安全、可靠、卫生,设备维护管理简单方便,节省建筑面积,采用计算机智能控制变频调速供水技术,供水安全可靠,是真正的卫生、环保的绿色供水设备。当采用直接从城镇给水管网吸水的无负压供水时,应符合下列要求:无负压供水设计方案应经当地供水行政主管部门及供水部门批准认可;无负压供水的调速泵机组的扬程应按吸水端城镇给水管网允许最低水压确定无负压供水系统在用户正常用水情况下不得断水。

8.2雨水回收与利用:

本建筑采用屋面雨水收集与利用技术,在城市和建筑小区推广雨水收集利用工程是非常环保和节能的措施,雨水收集与利用在技术上是可行的,在社会效益和环境效益是非常可观的,而且极大地提高了水资源的利用率,可在一定程度上解决季节性缺水问题,雨水收集与利用技术值得大力推广和应用。

图一:

  

图一

图二

图三

 

第二篇:高层建筑给排水系统设计

高层建筑给排水系统设计

  1高层建筑给排水系统概述

  在我国建筑行业的标准中,净高高于一百米的建筑即可称为超高层建筑。高层建筑往往是各类功能的综合体,其主要的特点包括:建筑往往承载着比较复杂多样化的功能;通常建筑内部含有写字楼办公、宾馆住宿、商场饭店、娱乐休闲场所等。可见高层建筑在功能上合结构上是综合体,所以对此类建筑的给排水系统进行设计,需要兼顾各类方面。结合我国已有的一些高层建筑给排水设计样本,总结出其特点如下:(1)在高层建筑中,其静水所导致的压力往往远高于普通建筑,在设计中假若如普通建筑一样进以单区进行水供给,一方面对用户的使用造成影响,另一方面对于管道和配件等装置也造成较大的压力,减少其使用寿命。

  所以在具体供水方式的选择上,应该在精确计算的基础上为之设置分区,从而减少系统的水压,使系统维持正常的可靠性和使用寿命。(2)在高层建筑中,由于住户多,因此也面临着较大的排水量,以及较长的各类管道,这就容易导致在管道中存在着难以预测的压力。因此在给排水系统的设计中应充分重视排水系统能力的提升,并尽量使管道压力保持稳定性,使管道水封维持一定的可靠度。因此其排水系统建议引入通气管,以及结合国外一些先进的典范使用单立管的模式。在管道材质的选择上,应注重材料的机械强度,而在管道接口材料的选择上,则尽量选择柔性接口。(3)高层建筑由于用户多,因此也面临着较大的排水量,如果出现了管道不通以及停水等事件,则影响面是很大的。所以在设计方案中应保证供水的可靠性和排水的顺畅性。(4)高层建筑中由于水量大,管线长度达,所以也存在着多于普通建筑的动力设备,在进行设计时,应避免产生过多的扰民噪声以及震动等。

  2高层建筑给排水系统分析

  本部分结合一些国内较为先进的高层建筑给排水设计案例以及笔者的实践经验,对系统进行较为详尽的剖析。

  2.1给水系统设计分析高层建筑的给水模式可以分为两大系列:并联系列与串联系列;而在具体设备的选择上同样可以分为两个类别,及水箱与水泵。结合一些典型优质工程的实例,笔者对其给水系统的模式进行总结。下面对其中一些设计要素进行分析:

  (1)串/并组合方式的供水分析

  高层建筑依据设计标准,均设置有避难层,在具体的设计中,可以将高位水箱装置设置在这些部位。根据统计,当前不少高度大于四百米的建筑,往往选取的是基于串联方式的给水模式。这种方式具有其固有的优点,即显著降低了竖向立管的使用量,所以能够在很大程度上减少管井数量,节约机房面积等,同时降低了水泵等设备所承受的压力,整个体系的可靠性明显提升,且节约了投资。在这种情况下进行设计时,尤其应该注意将系统有效压力的区间控制在可接受的程度,所以减压阀是不能缺少的。此时应注意的是减压阀失效的问题,因为一旦发生失效,很容易引起串压,对管配件运行造成较大的影响,这就需要在具体设计中,为每一个分区设置合适的高度。对于基于并联方式的给水模式,其给水泵设备往往安排在楼宇的地下室等处,所以对建筑面积的占用影响很小,且每一个分区都可以彼此独立,加上并联的设备布置地点往往集中,因此给设备的维护和管理提供了很多便捷。而需要注意的是,并联的方式其立管数量较多,因此系统的高压泵承受着较大的压力,因此应对其进行综合考虑,结合楼宇中的避难层安排,为并联系统增设转输水泵。综上所述,串并联结合的方式是笔者推荐的一种方式。

  (2)减压装置的设计分析

  高层建筑的给排水系统中,必须设置必要的减压阀。减压阀的作用虽不容忽视,但其本质上属于机械设备,因此有着一定的故障率。在实际条件允许的前提下,笔者建议应在整体上控制减压阀的数量,例如可以通过在某些楼层中部署水箱、水泵的方式等。在此以上海中心为例,其给水系统的设计中,除去某些楼层由于观光等需要采用的是基于变频器的供水模式,绝大部分均是以水泵+水箱的模式供水。在串并联的选择上,引入的是串并联结合的方式。可见,在上海金融中心的给水系统设计中,尽量降低了减压阀的数量。

  (3)高位水箱与变频泵

  在超高层建筑中,给排水系统的设计必须涉及到高位水箱和给水泵,但随着设计目标的不同,其关注点也有所不同。通过高位水箱进行供水的给水装置,是把住户所需的用水储存于高位水箱,然后结合水量需求将其分配至每一个用水处。而基于变频水泵的给水方式中,是在整个系统里,结合其具体功能将其分成转输水泵与给水变频泵,前者的功能是供给高位水箱,后者则供给各用水点。其中,在串联供水的方式下必须设置转输水泵。而在高层建筑中,给水变频泵的设计时尤为重要的。对于高层建筑而言,应着重考虑其安全性,在这种背景下,笔者建议减压阀的数量在设计时应着重进行控制。以南京紫风大厦为例,其选用的是高位水箱+水泵的综合给水模式,优势在于能够节约建筑房面积,另外通过变频泵进行供水的区域往往属于水压较小的楼层,因此能够达到节水的目标。但还应考虑到高层的客房区往往对于供水的稳定性有着较高的要求,变频泵的缺点是稳定行不足。而上海金融中心则采用的是串联+并联模式,虽然占地面积较大,但是却能够使给水的稳定性大为提升。

  2.2排水系统设计分析

  (1)水管的压力分析

  排水管和雨水管有明显差异,前者属于非满特征,后者则为满管流,考虑到排水管和雨水管均非压力系统,所以在对其承压能力进行计算的时候,无法结合因管高来计算其实际压力等级。如果管径在150mm左右,则当管长接近一百米时,其压强往往高于0.11兆帕,在这样的压力之下,可以将管内异物冲走。结合对我国一些高层建筑设计的典范,往往采用的是抗压能力很强的管材,例如上海金融大厦使用的是加厚钢管,而重庆金融中心则选用了衬塑钢管。

  (2)单立管排水模式分析

  单立管排水模式的使用范围往往局限于:某些洗手间面积受限的情况,例如居民住宅和宾馆等,以及一些对低排噪声非常敏感的环境。针对高层建筑,由于其往往高度很高,而每一层的建筑面积有限,所以管井的面积在设计中应尽量减小,在这种情况下,可以选择单立管排水的模式。一方面可以实现较满意的排水能力,另一方面还可以降低水流噪声。需要注意的是在对多个立管进行汇合的设计时,应为其配置特殊接头。在已有的工程实例中,上海金融大厦选用的是单立管排水模式,且取得了较为满意的效果,排水及时而通畅,异味及噪声均对住户未造成影响。

  3高层建筑给排水系统设计案例分析

  结合实例分析,本文以一高层建筑为例,对其给排水系统进行设计。该工程位于成都市,是一栋多功能性质的综合性高层建筑,包含了饭店、写字楼与购物中心等。该建筑地下2层,地上二十八层。地下用于车库和设备,建筑净高为98.5米。

  3.1给水系统设计

  该建筑所处地点的市政供水压力是0.4兆帕,因此在节能理念下,为充分利用水压,因此在建筑的地下2层至地上六层均选择市政供水;七层及以上则引入变频器实现供水。将整个供水系统进行分区,七至十九层引入的供水方式是低区变频器;二十至二十八层则选用了高区变频器。经统计,该楼宇的住户共计659户,日均耗水为670立方米,因此设计170立方米的储水池,并将该水池等分成彼此独立的部分。

  3.2排水系统的设计

  在污废水的设计中,将楼宇的污水与废水通过合流的方法进行排放,所有住户产生的污水与废水通过集中的化粪池之后,通往市政的污水网设施之中;楼宇的2-3层属于饭店餐饮区,其所派出的废水首先被格油池进行标准化的处理,随后同样排出到市政污水网;来自地面以下的废水则设置专用的水泵,将其注入到污水管网。在具体的设计中,出于节能和安全的考虑,对集水井进行了优化改造。通常的设计模式,是在建筑物的消防梯附近配置相对独立的集水井,考虑到本文所设计的楼宇并未在地下室设置人防,假若将集水井布设在电梯附近,则其电梯承台高度只能降低,会增加设计造价。在这种情况下,对集水井进行优化,将其移植到车库中,和车库专用的集水井合并。

  而电梯和车库在防火区域上属于同一个区域,而电梯和车库间设计为甲级的防火门,出于保持防火安全性的目的,把集水井排水管部署在潜水泵之下。另外,在设计中,还着重考虑了住户洗手间和厨房的废水立管是否分设。在住宅规范的标准中,这两类管道应该分别进行设计和设置,而在该楼宇中,这些分设的排水立管在延伸至转换层的时候,便开始合二为一。同时还考虑到,位于住户底部的支管和立管如何进行相互的连接。一般工程设计中所采取的方法为:在住户底部的管道设计中增加独立的排水管,同时为之设置伸顶通气装置。这样的方案也存在不足之处,即处于外立面的管道明显增多,美观度下降,且增加了工程成本,室内空间也被占用。还有一种方法是在楼宇底部的厨房所用的的排水管上布置止回阀,并将这个支管的位置设计到厨柜之内,为检修提供便利。结合以上的分析,最终为本工程污废水立管选用了硬聚氯乙烯管。

  4结束语

  在高层建筑的设计中,其给排水系统是十分关键的一个部分,给排水模块的设计质量,与建筑住户的体验及生活密切相关,因此在这方面的设计十分注重其实际功能以及节能等问题。建筑工程的设计人员应充分遵循高层建筑的设计规范,通过借鉴成功的工程经验,并积极引入有利于安全性、可靠性的新技术,提升我国建筑行业的整体技术、节能及安全水平。

相关推荐