特种加工综述

超声加工技术的综述

学校:南京工程学院 院系:工业中心 班级:

学号:

姓名:郭志松 D数加工103班 231100319

前言 .................................................................................................................................................. 3

超声波概述 ............................................................................................................................... 3

超声波具有如下几种主要性质: ................................................................................... 3

一、超声加工技术的发展 ............................................................................................................... 4

二、超声加工技术的现状评述 ....................................................................................................... 5

三、超声加工技术的发展前景预测 ............................................................................................... 5

1、超声振动切削技术..............................................................................................................5

2、超声复合加工技术..............................................................................................................6

3、微细超声加工技术..............................................................................................................6

总结....................................................................................................................................................7

前言

本文通过对超声加工的介绍,阐述了超声加工作为新生的特种加工方法对人类生产和生活的影响,得出了超声加工的不断发展将在未来的机械加工中占有一席之地、、、、、、

超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。几十年来,超声加工技术的发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。

超声波概述

“超声波”这个名词术语,用来描述频率高于人耳听觉频率上限的一种振动波,通常是指频率高于16kHz以上的所有频率。超声波的上限频率范围主要是取决于发生器,实际用的最高频率的界限,是在5000MHz的范围以内。在不同介质中的波长范围非常广阔,例如在固体介质中传播,频率为25kHz的波长约为200mm;而频率为500MHz的波长约为0.008mm。 超声波和声波一样,可以在气体、液体和固体介质中传播。由于超声波频率高、波长短、能量大,所以传播时反射、折射、共振以及损耗等现象更显著。在不同的介质中,超声波传播的速度c亦不同,例如c空气=331m/s;c水=1430m/s;c铁=5850m/s。速度c与波长λ和频率f之间的关系可用下式表示:

λ=c/f

超声波具有如下几种主要性质:

1、超声波能传递很强的能量;

2、超声波的空化作用;

3、超声波的反射、透射、折射;

4、超声波的衍射;

5、超声波的干涉和共振。

一、超声加工技术的发展

19xx年,美国物理学家伍德和卢米斯最早作了超声加工试验,利用超声振动对玻璃板进 行雕刻和快速钻孔。但当时超声加工并未应用到工业上,直到大约19xx年在文献上第一次出现超声加工(USM-Ultrasonic Machining)工艺技术描述以后,超声加工才吸引了大家的 注意,并且逐渐融入到其他的工业领域。19xx年,科恩研制了第一台实用的超声加工机,为超声加工技术的发展奠定了基础。USM提供了比常规机械加工技术更多的优点。例如,导电和非导电材料它都可以加工,并且加工复杂的三维轮廓也可以像简单形状那样快速。此外,超声加工过程不会产生有害的热区域,同时也不会在工件表面带来化学电气变化,而且加工时在工件表面上所产生的有压缩力的残余应力可以增加被加工零件的高周期性疲劳强度。然而,在USM中必须供给磨料工作液,并且要保证加工过程中能有效清除刀具和工件 间隙中的切屑和磨损磨粒。因此,材料的去除速率相当慢,甚至于在切削深度较大时会停止 工作。而且,在磨粒及切屑混合液的流通过程中,对已加工表面或者孔壁会造成二次磨蚀, 导致工件加工精度的降低,尤其是小孔加工。此外,磨料工作液还会磨蚀刀具本身,它将引起刀具端面及径向的大量磨损,从而很难保证加工精度。为了克服这些问题,PLegge提出采用固结金刚石刀具,结合工件的旋转进行孔加工的方法,形成了最初的旋转超声加工。这种加工方法克服了普通超声加工中游离超硬磨料液在刀具和工件之间流通不畅,以及磨料对加工刀具和加工孔壁的磨蚀等问题,同时使加工精度和材料的去除率得到了显著提高。后来研制了一种具有旋转超声振动系统的超声加工机床,固结式金刚石刀具以一定的静压力作用到工件材料上,并以一定振幅作轴向超声频振动,同时还作相对于工件的高速旋转运动,并且冷却液不断地被输送到刀具和工件表面之间,这种方法已被证实是一种高效低成本的硬脆性材料加工方法。因此,旋转超声加工技术一直倍受各国研究学者的关注。英、美、苏、德、日和中等国家己对超声旋转加工设备的研制以及工艺方法作了一些研究。当前,旋转超声加工技术的应用范围,已由最初的旋转超声孔钻削加工,扩展到旋转超声磨削加工、旋转超声平面铣削加工等加工方式。通过对超声加工刀具与工件间运动学关系的分析以及对加工工件表面质量和刀具磨损等方面的研究,大家普遍认为旋转超声加工的机理主要包含以下几个相互作用的因素:刀具头上金刚石磨料在超高加速度下对工件材料表面的锤击作用,致使工件的局部应力远远超过材料的断裂极限,这种应力使材料表面产生压痕,导致微细裂纹的产生、扩展,最终形成微观局部破碎去除;同时,金刚石刀具相对于工件材料的高速旋转,使得嵌入工件表面的磨粒在工件表面上划擦、磨抛以及撕扯工件材料,这种磨抛作用大大加速了微裂纹的扩展,造成了材料的宏观破碎去除。A.I.Markov,D. Prabhakar 和Z.J . Pei等人先后推导出基于脆性断裂去除模式的旋转超声钻削中材料去除率理论模型。后来Z . J . Pei等人研究发现在旋转超声钻削先进陶瓷中,材料的去除机理包括脆性去除和塑性去除,于是在1998 年提出了基于塑性变形去除模式的旋转超声钻削中材料去除率理论模型。此外,超声加工中工作液受刀具端面超声振动作用而产生高频、交变的正负液压冲击波和空化作用,促使工作液进入被加工材料的微裂缝,加剧了机械破坏作用,加工过程得到加强。而且,超声空化爆破作用和刀具的旋转运动使碎屑始终处于运动状态,同时阻止了碎屑的沉积过程,促进了碎屑在工作液中流动,加速了碎屑的排出,推进了加工的进行。上述几个加工机理的相互促进和综合作用,大大地提高了材料的去除率。

二、超声加工技术的现状评述

超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。

日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。

日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。

东南大学研制了一种新型超声振动切削系统。该系统采用压电换能器,由超声波发生器、匹配电路、级联压电晶体、谐振刀杆、支承调节机构及刀具等部分组成。当发生器输出超声电压时,它将使级联晶体产生超声机械伸缩,直接驱动谐振刀杆实现超声振动。该装置的特点是:能量传递环节少,能量泄漏减小,机电转换效率高达90%左右,而且结构简单、体积小,便于操作。

沈阳航空工业学院建立了镗孔用超声扭转振动系统,采用磁致伸缩换能器,将超声波发生器在扭转变幅杆的切向作纵向振动时在扭振变幅杆的小端就输出沿圆周方向的扭转振动,镗刀与扭振变幅杆之间采用莫氏锥及螺纹连接,输出功率小于500W,频率为16~23 kH z,具有频率自动跟踪性能。

西北工业大学设计了一种可在内圆磨床上加工硬脆材料的超声振动磨削装置。该装置由超声振动系统、冷却循环系统、磨床连接系统和超声波发生器等组成,其超声换能器采用纵向复合式换能器结构,冷却循环系统中使用磨削液作为冷却液;磨床连接系统由辅助支承、制动机构和内圆磨床连接杆等组成。该磨削装置工具头旋转精度由内圆磨床主轴精度保证,结构比专用超声波磨床的主轴系统要简单得多,因此成本低廉,适合于在生产中应用。

三、超声加工技术的发展前景预测 1、超声振动切削技术

随着传统加工技术和高新技术的发展,超声振动切削技术的应用日益广泛,振动切削研究日趋深入,主要表现在以下几个方面。

(1) 研制和采用新的刀具材料

在现代制造业中,钛合金、纯钨、镍基高温合金等难加工材料所使用的范围越来越大,对机械零件加工质量的要求越来越高。为了更好地发挥刀具的效能,除了选用合适的刀具几何参数外,在振动切削中,人们将更多的注意力转为对刀具材料的开发与研究上,其中天然金刚石、人造金刚石和超细晶粒的硬质合金材料的研究和应用为主要方向。 (2) 研制和采用高效的振动切削系统

现有的实验及实用振动切削加工系统输出功率尚小、能耗高,因此,期待实用的大功率振动切削系统早日问世。到目前为止,输出能量为4 kW的振动切削系统已研制出来并投产使用。

在日本,超声振动切削装置通常可输出功率1 kW,切削深度为0.01~0.06 mm。 (3) 对振动切削机理深入研究

当前和今后一个时期对振动切削机理的研究将主要集中以下几个方面:① 在振动切削状态下工件材料是如何与工件分离并形成屑的。 ② 振动切削中刀具与工件相互作用的力学分析。 ③ 振动切削机理的微观研究及数学描述。

(4) 超声椭圆振动切削的研究与推广

超声波椭圆振动切削已受到国际学术界和企业界的重视。美国、英国、德国和新加波等国的大学以及国内的北京航空航天大学和上海交通大学已开始这方面的研究工作。日本企业界如日立、多贺和Towa公司等已开始这方面的实用化研究。但是,超声波椭圆振动切削在理论和应用方面还有许多工作要做。尤其是对硬脆性材料的超精密切削加工、微细部位和微细模具的超精密切削加工等方面还需要进一步研究。

(5) 超声铣削加工技术

工程陶瓷的应用日益广泛,但其成形加工十分困难。尤其是具有三维复杂型面的工程陶瓷零件至今尚无有效的加工手段,严重影响了工程陶瓷材料的推广应用。大连理工大学提出了基于分层去除技术的超声铣削加工方法,研制了超声数控铣削机床,开辟了利用超声加工技术数控加工工程陶瓷零件的途径。基于分层去除思想的超声铣削加工技术,解决了传统超声加工中工具损耗严重且不能在线补偿的难题,使加工带有尖角和锐边的三维复杂型面工程陶瓷零件成为可能,为工程陶瓷的广泛应用提供了有力的技术支持。

2、超声复合加工技术

目前,超声波、电火花、机械三元复合加工技术的研究较快的发展。哈尔滨工业大学利用超声波、电火花、磨料复合加工技术对不锈钢进行加工,解决了电火花小孔加工中生产率和表面质量不能兼顾的矛盾,具有较好的应用前景。

在现代工业生产中,模具的应用越来越广泛,对模具精度和表面质量的要求也越来越高。在模具制造过程中,光整加工工序对模具质量影响很大,但目前该工序在很大程度上仍依赖手工完成,严重制约了模具加工技术的发展,是一个亟待解决的关键技术问题。华南理工大学采用超声电解磨粒复合加工技术对形状复杂的模具型腔光整加工进行了研究,并利用BP神经网络对加工表面粗糙度进行预测,取得了良好的效果。超声电解磨粒复合加工技术是一项新的复合加工技术,能较好地适用于形状复杂的模具型腔光整加工。但尚有许多方面的内容有待进一步研究,特别是各主要加工因素对加工表面粗糙度的影响以及表面金属的去除机理等。

随着科学技术的发展,人们开始探索对环境污染少甚至没有污染的加工方法,研究新的工作介质是解决这个问题的关键。近年来,日本东京农工大学对气体介质中的电火花脉冲放电加工技术进行了开创性的研究,为电火花脉冲放电加工技术开辟了一条崭新的途径,但该技术在加工过程中短路频繁。山东大学的研究人员将超声振动引入气中放电加工技术,并对工程陶瓷进行了加工实验研究,加工效率提高了近3倍。但该工艺的加工机理有待于进一步研究。

3、微细超声加工技术

以微机械为代表的微细制造是现代制造技术中的一个重要组成部分,晶体硅、光学玻璃、工程陶瓷等硬脆材料在微机械中的广泛应用,使硬脆材料的高精度三维微细加工技术成为世界各国制造业的一个重要研究课题。目前可适用于硬脆材料加工的手段主要有光刻加工、电火花加工、激光加工、超声加工等特种加工技术。超声加工与电火花加工、电解加工、激光加工等技术相比,既不依赖于材料的导电性又没有热物理作用,与光刻加工相比又可加工高

深宽比三维形状,这决定了超声加工技术在陶瓷、半导体硅等非金属硬脆材料加工方面有着得天独厚的优势。随着东京大学生产技术研究所增泽研究室对微细工具的成功制作及微细工具装夹、工具回转精度等问题的合理解决,采用工件加振的工作方式在工程陶瓷材料上加工出了直径最小为5μm的微孔,从而使超声加工作为微细加工技术成为可能。

总结

随着各行业对于新型材料需求的增加,超声加工技术的发展和研究也倍受关注使得在超声加工工艺以及超声加工机床的研制方面取得了丰富的成果。但是,旋转超声加工相对其他特种加工方法在航空航天以及军工和国防工业中的应用,并没有凸现其固有的优势。这在很大程度上受限于超声加工技术的发展相对缓慢,主要因为数字化高性能的超声加工机床出现时间不长,而且大功率超声加工机床稳定工作还存在一些需要攻克的难题。如市场化的数控旋转超声加工机床,满额超声功率在500W 以下,而且长时间工作下只推荐使用几十瓦甚至是十几瓦的超声功率。因此超声加工硬脆材料潜能的开发还有待于机床性能的进一步完善。同样,超声加工刀具的研究相对于传统切磨削加工刀具而言也没有得到广泛的关注。而在超声加工中,实现刀具与超声振动系统之间的有效连接,能否平稳传递超声能量,是机床能否正常工作的关键所在。在刀具的设计与制造方面,可以借鉴传统超硬磨料刀具制作的工艺方法和相关的研究成果,结合超声加工的特点,对超声刀具的结构参数以及工作端面磨料层的制备,包括磨料的种类和粒度、浓度和制作工艺等方面因素作详尽的研究,从而有效地提高加工刀具的寿命,保证加工表面的质量。我们相信,在超声加工机床性能日益完善的条件下,随着超声加工工艺条件的不断优化和提高以及适宜于超声加工的刀具的开发和应用,超声加工技术的应用领域将得到大大的扩展,它必将在航空和国防工业中广泛使用的先进复合材料以及功能晶体材料的精密加工上大有作为。

 

第二篇:聚晶金刚石拉丝模具的特种加工方法综述

聚晶金刚石拉丝模具的特种加工方法综述

聚晶金刚石拉丝模具的特种加工方法综述

聚晶金刚石拉丝模具的特种加工方法综述

相关推荐