20xx考研线性代数知识点总结(免费)

1、行列式

1.       行列式共有个元素,展开后有,可分解为行列式;

2.       代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.       代数余子式和余子式的关系:

4.       设行列式

上、下翻转或左右翻转,所得行列式为,则

顺时针或逆时针旋转,所得行列式为,则

主对角线翻转后(转置),所得行列式为,则

主副角线翻转后,所得行列式为,则

5.       行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式():主对角元素的乘积;

④、:副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

6.       对于阶行列式,恒有:,其中阶主子式;

7.       证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

2、矩阵

1.       阶可逆矩阵:

(是非奇异矩阵);

(是满秩矩阵)

的行(列)向量组线性无关;

齐次方程组有非零解;

总有唯一解;

等价;

可表示成若干个初等矩阵的乘积;

的特征值全不为0;

是正定矩阵;

的行(列)向量组是的一组基;

中某两组基的过渡矩阵;

2.       对于阶矩阵 无条件恒成立;

3.      

4.       矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5.       关于分块矩阵的重要结论,其中均可逆:

,则:

Ⅰ、

Ⅱ、

②、;(主对角分块)

③、;(副对角分块)

④、;(拉普拉斯)

⑤、;(拉普拉斯)

3、矩阵的初等变换与线性方程组

1.       一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:

等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵,若

2.       行最简形矩阵:

①、只能通过初等行变换获得;

②、每行首个非0元素必须为1;

③、每行首个非0元素所在列的其他元素必须为0;

3.       初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、           若,则可逆,且

②、对矩阵做初等行变化,当变为时,就变成,即:

③、求解线形方程组:对于个未知数个方程,如果,则可逆,且

4.       初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、,左乘矩阵的各行元素;右乘,的各列元素;

③、对调两行或两列,符号,且,例如:

④、倍乘某行或某列,符号,且,例如:

⑤、倍加某行或某列,符号,且,如:

5.       矩阵秩的基本性质:

①、

②、

③、若,则

④、若可逆,则;(可逆矩阵不影响矩阵的秩

⑤、;(※)

⑥、;(※)

⑦、;(※)

⑧、如果矩阵,矩阵,且,则:(※)

      Ⅰ、向量全部是齐次方程组解(转置运算后的结论);

      Ⅱ、

⑨、若均为阶方阵,则

6.       三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;

②、型如的矩阵:利用二项展开式;

      二项展开式:

      注:Ⅰ、展开后有项;

Ⅱ、

Ⅲ、组合的性质:

③、利用特征值和相似对角化:

7.       伴随矩阵:

①、伴随矩阵的秩:

②、伴随矩阵的特征值:

③、

8.       关于矩阵秩的描述:

①、中有阶子式不为0,阶子式全部为0;(两句话)

②、中有阶子式全部为0;

③、中有阶子式不为0;

9.  线性方程组:,其中矩阵,则:

①、与方程的个数相同,即方程组个方程;

②、与方程组得未知数个数相同,方程组元方程;

10.  线性方程组的求解:

①、对增广矩阵进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解;

③、特解:自由变量赋初值后求得;

11.  由个未知数个方程的方程组构成元线性方程:

①、

②、(向量方程,矩阵,个方程,个未知数)

③、(全部按列分块,其中);

④、(线性表出)

⑤、有解的充要条件:为未知数的个数或维数)

4、向量组的线性相关性

1.       维列向量所组成的向量组构成矩阵

维行向量所组成的向量组构成矩阵

含有有限个向量的有序向量组与矩阵一一对应;

2.       ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)

②、向量的线性表出        是否有解;(线性方程组)

③、向量组的相互线性表示  是否有解;(矩阵方程)

3.       矩阵行向量组等价的充分必要条件是:齐次方程组同解;(例14)

4.       ;(例15)

5.       维向量线性相关的几何意义:

①、线性相关       

②、线性相关     坐标成比例或共线(平行);

③、线性相关 共面;

6.       线性相关与无关的两套定理:

线性相关,则必线性相关;

线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)

维向量组的每个向量上添上个分量,构成维向量组

线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)

简言之:无关组延长后仍无关,反之,不确定;

7.       向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);

向量组能由向量组线性表示,则;(定理3

向量组能由向量组线性表示

有解;

           定理2

      向量组能由向量组等价定理2推论

8.       方阵可逆存在有限个初等矩阵,使

①、矩阵行等价:(左乘,可逆)同解

②、矩阵列等价:(右乘,可逆);

③、矩阵等价:可逆);

9.       对于矩阵

①、若行等价,则的行秩相等;

②、若行等价,则同解,且的任何对应的列向量组具有相同的线性相关性;

③、矩阵的初等变换不改变矩阵的秩;

④、矩阵的行秩等于列秩;

10.  若,则:

①、的列向量组能由的列向量组线性表示,为系数矩阵;

②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)

11.  齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明

①、    只有零解只有零解;

②、 有非零解一定存在非零解;

12.  设向量组可由向量组线性表示为:(19结论

      其中,且线性无关,则组线性无关;(的列向量组具有相同线性相关性

(必要性:;充分性:反证法)

      注:当时,为方阵,可当作定理使用;

13.  ①、对矩阵,存在     的列向量线性无关;(

②、对矩阵,存在的行向量线性无关;

14.      线性相关

存在一组不全为0的数,使得成立;(定义)

有非零解,即有非零解;

,系数矩阵的秩小于未知数的个数;

15.  设的矩阵的秩为,则元齐次线性方程组的解集的秩为:

16.  若的一个解,的一个基础解系,则线性无关;(33结论

5、相似矩阵和二次型

1.       正交矩阵(定义),性质:

①、的列向量都是单位向量,且两两正交,即

②、若为正交矩阵,则也为正交阵,且

③、若正交阵,则也是正交阵;

      注意:求解正交阵,千万不要忘记施密特正交化单位化

2.       施密特正交化:

     

      ;

3.       对于普通方阵,不同特征值对应的特征向量线性无关;

对于实对称阵,不同特征值对应的特征向量正交;

4.       ①、等价   经过初等变换得到

可逆;

同型;

②、合同   ,其中可逆;

                      有相同的正、负惯性指数;

③、相似  

5.       相似一定合同、合同未必相似;

为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);

6.       为对称阵,则为二次型矩阵;

7.       元二次型为正定:

的正惯性指数为

合同,即存在可逆矩阵,使

的所有特征值均为正数;

      的各阶顺序主子式均大于0;

      ;(必要条件)

 

第二篇:【大纲解析】20xx数学考研大纲解析:线性代数重点内容与题型总结

【大纲解析】2015数学考研大纲解析:线性代数重点内容与题型总结

2015考研大纲如期发布,所幸的是数学大纲没有变化,这对于广大考生,尤其是数学复习有难度的考生来说是一个利好消息,大家可以按照之前的复习计划继续复习,在这里乐考无忧名师团队专门针对线性代数中重点内容和典型题型做一个总结,希望对同学们复习有帮助。

一、行列式 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。

1重点内容:行列式计算

(1)降阶法 这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。

(2)特殊的行列式 有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。

 2常见题型

(1)数字型行列式的计算

(2)抽象行列式的计算

(3)含参数的行列式的计算。

 二、矩阵 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。

 1重点内容:

(1)矩阵的运算

(2)伴随矩阵

(3)可逆矩阵

(4)初等变换和初等矩阵

(5)矩阵的秩

2常见题型:

(1)计算方阵的幂

(2)与伴随矩阵相关联的命题

(3)有关初等变换的命题

(4)有关逆矩阵的计算与证明 矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。

(5)解矩阵方程。

三、向量 向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。

 1重点内容:

(1)向量的线性表示 线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。

(2)向量组的线性相关性 向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。

(3) 向量组等价 要注意向量组等价与矩阵等价的区别。

(4)向量组的极大线性无关组和向量组的秩   

(5)向量空间

2常见题型:

(1)判定向量组的线性相关性

(2)向量组线性相关性的证明

(3)判定一个向量能否由一向量组线性表出

(4)向量组的秩和极大无关组的求法

(5)有关秩的证明。

(6)有关矩阵与向量组等价的命题

(7)与向量空间有关的命题。

四、线性方程组 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如20##年的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。

 1重点内容

(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构

(2)齐次线性方程组基础解系的求解与证明

(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。       2常见题型

(1)线性方程组的求解

(2)方程组解向量的判别及解的性质

(3)齐次线性方程组的基础解系

(4)非齐次线性方程组的通解结构

(5)两个方程组的公共解、同解问题。

 五、特征值与特征向量 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。

1重点内容

 (1)特征值和特征向量的概念及计算

 (2)方阵的相似对角化

(3)实对称矩阵的正交相似对角化。

 2常见题型

(1)数值矩阵的特征值和特征向量的求法

(2)抽象矩阵特征值和特征向量的求法

(3)判定矩阵的相似对角化

(4)由特征值或特征向量反求A

(5)有关实对称矩阵的问题。

六、二次型 由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。

 1重点内容:

(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;

(2)了解二次型的规范形和惯性定理;

(3)掌握用正交变换并会用配方法化二次型为标准形;

(4)理解正定二次型和正定矩阵的概念及其判别方法。

2常见题型

(1)二次型表成矩阵形式

(2)化二次型为标准形

(3)二次型正定性的判别。

乐考无忧老师提醒同学们同学们对照以上内容和题型,多问问自己是否已熟练掌握相关知识点和对应题型的解答。应该说考研数学最简单的部分就是线性代数,其计算都是初等的,小学生都会,但这部分的难点就在于概念非常多而且相互联系,线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。同时从考试内容来看,考的内容基本类似,可以说是最死的部分,这几年出的考试题实际上就是以前考题的翻版,仔细研究一下以前考题对大家是最有好处的。

相关推荐