高中物理选修3-1知识点归纳

 物理选修3-1经典复习

一、电场

1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
   2.库仑定律:F=kQ1Q2/r2(真空中的点电荷){F:点电荷间的作用力(N);k:静电力常量k=9.0×109N?m2/C2;Q1、Q2:两点电荷的电量(C);r:两点电荷间的距离(m);作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q:检验电荷的电量(C)}
  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
  5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
  6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
  7.电势与电势差:UAB=φAB,UAB=WAB/q=ΔEP/q
  8.电场力做功:WAB=qUAB=qEd=ΔEP{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔEP:带电体由A到B时势能的减少量}
  9.电势能:EPA=qφA{EPA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
  10.电势能的变化ΔEP=EPA-EPB {带电体在电场中从A位置到B位置时电势能的减少量}
  11.电场力做功与电势能变化WAB=ΔEP=qUAB(电场力所做的功等于电势能的减少量)
  12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
  13.平行板电容器的电容C=εS/(4πkd)(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器
  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用) :

类平抛运动(在带等量异种电荷的平行极板中:E=U/d)

垂直电场方向:匀速直线运动L=Vot
平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m =q U /m

注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
   (3)常见电场的分布要求熟记;
  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
  (6)电容单位换算:1F=106μF=1012PF;
  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
  (8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面
                                二、 恒定电流
  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
  2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
  3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
  4.闭合电路欧姆定律:I=E/(r +R)或E=Ir+ IR(纯电阻电路);

E=U +U ;E=U + I r ;(普通适用)
  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

 

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
   7.纯电阻电路和非纯电阻电路


  8.电源总动率P=IE;电源输出功率P=IU;电源效率η=P/P{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
  9.电路的串/并联: 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

10.欧姆表测电阻

11.伏安法测电阻
  1、电压表和电流表的接法

2、滑动变阻器的两种接法

注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mV;1MΩ=103kΩ=106Ω
  (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。
  (3)串联时,总电阻大于任何一个分电阻;并联时,总电阻小于任何一个分电阻;
  (4)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(4r);
                         三、磁场
   1.磁感应强度是用来表示磁场的强弱和方向的物理量, B =Φ/S,是矢量,单位(T),1T=1N/(A?m)
  2.安培力F=BIL (注:I⊥B) ; {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
  3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下

(a) f=F=mV2/r=mω2r=m (2π/T)2r=qVB;r=mV/qB;T=2πm/qB;

(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);

(c)解题关键:画轨迹、找圆心、定半径、圆心角(=弦切角的二倍)
  注:
  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
  (2)磁感线的特点及其常见磁场的磁感线分布要掌握;

 (3)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料

 

第二篇:高中物理选修3-1知识点总结

第9课时   带电粒子在复合场中的运动

考点1.带电粒子在复合场中的运动

 1.带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2.分析带电粒子在复合场中的受力时,要注意各力的特点。如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。而带电粒子在磁场中只有运动 (且速度不与磁场平行)时才会受到洛仑兹力, 力的大小随速度大小而变, 方向始终与速度垂直,故洛仑兹力对运动电荷不做功.

3.带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)

⑴带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.

⑵带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;

当带电微粒的速度垂直于磁场时,一定做匀速运动。

⑶与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论

考点2.带电粒子在复合场中的运动实例

运动的带电粒子在磁场中的应用:速度选择器、磁流体发电机、质谱仪、回旋加速器、电磁流量计、霍尔元件等

1.速度选择器

两平行金属板(平行金属板足够长)间有电场和磁场,一个带电的粒子(重力忽略不计)垂直于电、磁场的方向射入复合场,具有不同速度的带电粒子受力不同,射入后发生偏转的情况不同。如果能满足所受到的洛仑兹力等于电场力,那这一粒子将沿直线飞出。这种装置能把具有某一定速度(必须满足V=E/B)的粒子选择出来,所以叫做速度选择器。而且:在装置确定的情况下,速度选择器所选则的粒子,与电性无关,只与带电粒子的速度大小方向有关,是名副其实的速度选择器。

2.磁流体发电机

磁流体发电机是一项新兴技术,它可以把物体的内能直接转化成电能,两个平行金属板之间有一个很强的匀强磁场,将一束等离子体(即高温下电离的气体,含有大量的正、负带电粒子)喷入磁场,这些等离子体在洛仑兹力的作用下,回分别打在两个金属板上形成电源的正负极,就可以给外电路供电。若外电路接通,等离子体时刻向两个金属板聚集形成持续电源。

3.质谱仪

质谱仪最初是由汤姆生的学生阿斯顿设计的,让带电粒子飘进加速电场,后进入偏转磁场最终打在照相底片上,假设粒子质量为m,电量为q,加速电场电压为U,磁感应强度为B,可以得到打在照相底片的位置距离进入磁场,从这个结果可以看出如果粒子的电荷量相同而质量不同将打在照相底片的不同地方,他用质谱仪发现了氖20和氖22,证实了同位素的存在。现在的质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。

4.回旋加速器:要认识原子核内部的情况,必须把核“打开”进行“观察”。然而,原子核被强大的核力约束,只有用极高能量的粒子作为“炮弹”去轰击,才能把它“打开”。产生这些高能“炮弹”的“工厂”就是各种各样的粒子加速器,人们首先想到用电场去加速带电粒子,然而产生很高的加速电压在技术是困难的。所以就想到了多次(多级)加速的方法:回旋加速器,它用电场加速,磁场让粒子“转圈圈”。这样技术上的高压可以通过多次加速实现,且可以减少加速器装置所占的空间。

5.电磁流量计:为监测某化工厂的污水排放量等,技术人员在排污管末端安装了的流量计.该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加磁感应强度大小为B的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水(含正负离子)充满管口从左向右流经该装置时,由于受到磁场的作用会打在上下两个极板上,电压表将显示两个电极间的电压U.则可以推出污水流量Q与电压表的示数U有一定的关系。

6.霍尔元件:1879年美国物理学家E.H.霍尔观察到,在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差。这是因为薄片中的载流子就在洛仑兹力的作用下向着与电流和磁场都垂直的方向漂移,使得那两个极板间出现电压,这种电压后来就叫做霍尔电压。它与电流强度、磁感应强度、长方体形导体的厚度都有关系。利用这种效应制成的元件可以制成多种传感器。例如,由于霍尔元件体积很小,它可以用来制作探测磁场的探头,还可以应用在其他与磁场有关的自动控制系统中。

相关推荐