SQL语句优化方法大总结

SQL语句优化方法30例

—————————————————————————————————— 在SQL语句优化过程中,我们经常会用到hint,现总结一下在SQL优化过程中常见Oracle HINT的用法:

1. /*+ALL_ROWS*/

表明对语句块选择基于开销的优化方法,并获得最佳吞吐量,使资源消耗最小化. 例如:

SELECT /*+ALL+_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';

2. /*+FIRST_ROWS*/

表明对语句块选择基于开销的优化方法,并获得最佳响应时间,使资源消耗最小化. 例如:

SELECT /*+FIRST_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE

EMP_NO='SCOTT';

3. /*+CHOOSE*/

表明如果数据字典中有访问表的统计信息,将基于开销的优化方法,并获得最佳的吞吐量;

表明如果数据字典中没有访问表的统计信息,将基于规则开销的优化方法;

例如:

SELECT /*+CHOOSE*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';

4. /*+RULE*/

表明对语句块选择基于规则的优化方法.

例如:

SELECT /*+ RULE */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';

5. /*+FULL(TABLE)*/

表明对表选择全局扫描的方法.

例如:

SELECT /*+FULL(A)*/ EMP_NO,EMP_NAM FROM BSEMPMS A WHERE EMP_NO='SCOTT';

6. /*+ROWID(TABLE)*/

提示明确表明对指定表根据ROWID进行访问.

例如:

SELECT /*+ROWID(BSEMPMS)*/ * FROM BSEMPMS WHERE ROWID>='AAAAAAAAAAAAAA' AND EMP_NO='SCOTT';

7. /*+CLUSTER(TABLE)*/

提示明确表明对指定表选择簇扫描的访问方法,它只对簇对象有效.

例如:

SELECT /*+CLUSTER */ BSEMPMS.EMP_NO,DPT_NO FROM BSEMPMS,BSDPTMS

WHERE DPT_NO='TEC304' AND BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;

8. /*+INDEX(TABLE INDEX_NAME)*/

表明对表选择索引的扫描方法.

例如:

SELECT /*+INDEX(BSEMPMS SEX_INDEX) USE SEX_INDEX BECAUSE THERE ARE FEWMALE BSEMPMS */ FROM BSEMPMS WHERE SEX='M';

9. /*+INDEX_ASC(TABLE INDEX_NAME)*/

表明对表选择索引升序的扫描方法.

例如:

SELECT /*+INDEX_ASC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';

10. /*+INDEX_COMBINE*/

为指定表选择位图访问路经,如果INDEX_COMBINE中没有提供作为参数的索引,将选择出位图索引的布尔组合方式.

例如:

SELECT /*+INDEX_COMBINE(BSEMPMS SAL_BMI HIREDATE_BMI)*/ * FROM BSEMPMS WHERE SAL<5000000 AND HIREDATE< P>

11. /*+INDEX_JOIN(TABLE INDEX_NAME)*/

提示明确命令优化器使用索引作为访问路径.

例如:

SELECT /*+INDEX_JOIN(BSEMPMS SAL_HMI HIREDATE_BMI)*/ SAL,HIREDATE

FROM BSEMPMS WHERE SAL<60000;

12. /*+INDEX_DESC(TABLE INDEX_NAME)*/

表明对表选择索引降序的扫描方法.

例如:

SELECT /*+INDEX_DESC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';

13. /*+INDEX_FFS(TABLE INDEX_NAME)*/

对指定的表执行快速全索引扫描,而不是全表扫描的办法.

例如:

SELECT /*+INDEX_FFS(BSEMPMS IN_EMPNAM)*/ * FROM BSEMPMS WHERE DPT_NO='TEC305';

14. /*+ADD_EQUAL TABLE INDEX_NAM1,INDEX_NAM2,...*/

提示明确进行执行规划的选择,将几个单列索引的扫描合起来.

例如:

SELECT /*+INDEX_FFS(BSEMPMS IN_DPTNO,IN_EMPNO,IN_SEX)*/ * FROM BSEMPMS WHERE EMP_NO='SCOTT' AND DPT_NO='TDC306';

15. /*+USE_CONCAT*/

对查询中的WHERE后面的OR条件进行转换为UNION ALL的组合查询.

例如:

SELECT /*+USE_CONCAT*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M';

16. /*+NO_EXPAND*/

对于WHERE后面的OR 或者IN-LIST的查询语句,NO_EXPAND将阻止其基于优化器对其进行扩展.

例如:

SELECT /*+NO_EXPAND*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M';

17. /*+NOWRITE*/

禁止对查询块的查询重写操作.

18. /*+REWRITE*/

可以将视图作为参数.

19. /*+MERGE(TABLE)*/

能够对视图的各个查询进行相应的合并.

例如:

SELECT /*+MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELET DPT_NO ,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE A.DPT_NO=V.DPT_NO AND A.SAL>V.AVG_SAL;

20. /*+NO_MERGE(TABLE)*/

对于有可合并的视图不再合并.

例如:

SELECT /*+NO_MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELECT DPT_NO,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE

A.DPT_NO=V.DPT_NO AND A.SAL>V.AVG_SAL;

21. /*+ORDERED*/

根据表出现在FROM中的顺序,ORDERED使ORACLE依此顺序对其连接.

例如:

SELECT /*+ORDERED*/ A.COL1,B.COL2,C.COL3 FROM TABLE1 A,TABLE2 B,TABLE3 C WHERE

A.COL1=B.COL1 AND B.COL1=C.COL1;

22. /*+USE_NL(TABLE)*/

将指定表与嵌套的连接的行源进行连接,并把指定表作为内部表.

例如:

SELECT /*+ORDERED USE_NL(BSEMPMS)*/

BSDPTMS.DPT_NO,BSEMPMS.EMP_NO,BSEMPMS.EMP_NAM FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;

23. /*+USE_MERGE(TABLE)*/

将指定的表与其他行源通过合并排序连接方式连接起来.

例如:

SELECT /*+USE_MERGE(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;

24. /*+USE_HASH(TABLE)*/

将指定的表与其他行源通过哈希连接方式连接起来.

例如:

SELECT /*+USE_HASH(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;

25. /*+DRIVING_SITE(TABLE)*/

强制与ORACLE所选择的位置不同的表进行查询执行.

例如:

SELECT /*+DRIVING_SITE(DEPT)*/ * FROM BSEMPMS,DEPT@BSDPTMS WHERE

BSEMPMS.DPT_NO=DEPT.DPT_NO;

26. /*+LEADING(TABLE)*/

将指定的表作为连接次序中的首表.

27. /*+CACHE(TABLE)*/

当进行全表扫描时,CACHE提示能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使用端

例如:

SELECT /*+FULL(BSEMPMS) CAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS;

28. /*+NOCACHE(TABLE)*/

当进行全表扫描时,CACHE提示能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使用端

例如:

SELECT /*+FULL(BSEMPMS) NOCAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS;

29. /*+APPEND*/

直接插入到表的最后,可以提高速度.

insert /*+append*/ into test1 select * from test4 ;

30. /*+NOAPPEND*/

通过在插入语句生存期内停止并行模式来启动常规插入.

insert /*+noappend*/ into test1 select * from test4 ;

SQL语句优化技术分析

———————————————————————————————————— 最近几周一直在进行数据库培训,老师精湛的技术和生动的讲解使我受益匪浅。为了让更多的新手受益,我抽空把SQL语句优化部分进行了整理,希望大家一起进步。

一、操作符优化

1、IN 操作符

用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格。但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别:

ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。由此可见用IN的SQL至少多了一个转换的过程。一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL就不能转换了。

推荐方案:在业务密集的SQL当中尽量不采用IN操作符,用EXISTS 方案代替。

2、NOT IN操作符

此操作是强列不推荐使用的,因为它不能应用表的索引。

推荐方案:用NOT EXISTS 方案代替

3、IS NULL 或IS NOT NULL操作(判断字段是否为空)

判断字段是否为空一般是不会应用索引的,因为索引是不索引空值的。

推荐方案:用其它相同功能的操作运算代替,如:a is not null 改为 a>0 或a>’’等。不允许字段为空,而用一个缺省值代替空值,如申请中状态字段不允许为空,缺省为申请。

4、> 及 < 操作符(大于或小于操作符)

大于或小于操作符一般情况下是不用调整的,因为它有索引就会采用索引查找,但有的情况下可以对它进

行优化,如一个表有100万记录,一个数值型字段A,30万记录的A=0,30万记录的A=1,39万记录的A=2,1万记录的A=3。那么执行A>2与A>=3的效果就有很大的区别了,因为A>2时ORACLE会先找出为2的记录索引再进行比较,而A>=3时ORACLE则直接找到=3的记录索引。

5、LIKE操作符

LIKE操作符可以应用通配符查询,里面的通配符组合可能达到几乎是任意的查询,但是如果用得不好则会产生性能上的问题,如LIKE ‘%5400%’ 这种查询不会引用索引,而LIKE ‘X5400%’则会引用范围索引。 一个实际例子:用YW_YHJBQK表中营业编号后面的户标识号可来查询营业编号 YY_BH LIKE ‘%5400%’ 这个条件会产生全表扫描,如果改成YY_BH LIKE ’X5400%’ OR YY_BH LIKE ’B5400%’ 则会利用YY_BH的索引进行两个范围的查询,性能肯定大大提高。

6、UNION操作符

UNION在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION。如:

select * from gc_dfys

union

select * from ls_jg_dfys

这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。

推荐方案:采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。

select * from gc_dfys

union all

select * from ls_jg_dfys

二、SQL书写的影响

1、同一功能同一性能不同写法SQL的影响。

如一个SQL在A程序员写的为 Select * from zl_yhjbqk

B程序员写的为 Select * from dlyx.zl_yhjbqk(带表所有者的前缀)

C程序员写的为 Select * from DLYX.ZLYHJBQK(大写表名)

D程序员写的为 Select * from DLYX.ZLYHJBQK(中间多了空格)

以上四个SQL在ORACLE分析整理之后产生的结果及执行的时间是一样的,但是从ORACLE共享内存SGA的原理,可以得出ORACLE对每个SQL 都会对其进行一次分析,并且占用共享内存,如果将SQL的字符串及格式写得完全相同,则ORACLE只会分析一次,共享内存也只会留下一次的分析结果,这不仅可以减少分析SQL的时间,而且可以减少共享内存重复的信息,ORACLE也可以准确统计SQL的执行频率。

2、WHERE后面的条件顺序影响

WHERE子句后面的条件顺序对大数据量表的查询会产生直接的影响。如:

Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1

Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下'

以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个字段都没进行索引,所以执行的时候都是全表扫描,第一条SQL的dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,而在进行第二条SQL的

时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。

3、查询表顺序的影响

在FROM后面的表中的列表顺序会对SQL执行性能影响,在没有索引及ORACLE没有对表进行统计分析的情况下,ORACLE会按表出现的顺序进行链接,由此可见表的顺序不对时会产生十分耗服物器资源的数据交叉。(注:如果对表进行了统计分析,ORACLE会自动先进小表的链接,再进行大表的链接)

三、SQL语句索引的利用

1、操作符优化(同上)

2、对条件字段的一些优化

采用函数处理的字段不能利用索引,如:

substr(hbs_bh,1,4)=’5400’,优化处理:hbs_bh like ‘5400%’

trunc(sk_rq)=trunc(sysdate)

sk_rq<trunc(sysdate+1)

进行了显式或隐式的运算的字段不能进行索引,如:ss_df+20>50,优化处理:ss_df>30

‘X’ || hbs_bh>’X5400021452’,优化处理:hbs_bh>’5400021542’

sk_rq+5=sysdate,优化处理:sk_rq=sysdate-5

hbs_bh=5401002554,优化处理:hbs_bh=’ 5401002554’,注:此条件对hbs_bh 进行隐式的to_number转换,因为hbs_bh字段是字符型。

条件内包括了多个本表的字段运算时不能进行索引,如:ys_df>cx_df,无法进行优化

qc_bh || kh_bh=’5400250000’,优化处理:qc_bh=’5400’ and kh_bh=’250000’

四、其他

ORACLE的提示功能是比较强的功能,也是比较复杂的应用,并且提示只是给ORACLE执行的一个建议,有时如果出于成本方面的考虑ORACLE也可能不会按提示进行。根据实践应用,一般不建议开发人员应用ORACLE提示,因为各个数据库及服务器性能情况不一样,很可能一个地方性能提升了,但另一个地方却下降了,ORACLE在SQL执行分析方面已经比较成熟,如果分析执行的路径不对首先应在数据库结构(主要是索引)、服务器当前性能(共享内存、磁盘文件碎片)、数据库对象(表、索引)统计信息是否正确这几方面分析。 , 优化处理:sk_rq>=trunc(sysdate) and

相关推荐