算法分析与设计知识点总结

第一章 概述

算法的概念:算法是指解决问题的一种方法或过程,是由若干条指令组成的有穷序列。 算法的特征:

可终止性:算法必须在有限时间内终止;

正确性:算法必须正确描述问题的求解过程;

可行性:算法必须是可实施的;

算法可以有0个或0个以上的输入;

算法必须有1个或1个以上的输出。

算法与程序的关系:

区别:程序可以不一定满足可终止性。但算法必须在有限时间内结束;

程序可以没有输出,而算法则必须有输出;

算法是面向问题求解的过程描述,程序则是算法的实现。

联系:程序是算法用某种程序设计语言的具体实现;

程序可以不满足算法的有限性性质。

算法描述方式:自然语言,流程图,伪代码,高级语言。

算法复杂性分析:

算法复杂性的高低体现运行该算法所需计算机资源(时间,空间)的多少。

算法复杂性度量:

期望反映算法本身性能,与环境无关。

理论上不能用算法在机器上真正的运行开销作为标准(硬件性能、代码质量影响)。

一般是针对问题选择基本运算和基本存储单位,用算法针对基本运算与基本存储单 位的开销作为标准。

算法复杂性C依赖于问题规模N、算法输入I和算法本身A。即C=F(N, I, A)。

第二章 递归与分治

分治法的基本思想:

求解问题算法的复杂性一般都与问题规模相关,问题规模越小越容易处理。

分治法的基本思想是,将一个难以直接解决的大问题,分解为规模较小的相同子问题,直至这些子问题容易直接求解,并且可以利用这些子问题的解求出原问题的解。各个击破,分而治之。

分治法产生的子问题一般是原问题的较小模式,这就为使用递归技术提供了方便。递归是分治法中最常用的技术。

使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。

分治法所能解决的问题一般具有以下几个特征:

该问题的规模缩小到一定的程度就可以容易地解决;

该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; 利用该问题分解出的子问题的解可以合并为该问题的解;

该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。(这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。)

递归的概念:

直接或间接地调用自身的算法称为递归算法,用函数自身给出定义的函数称为递归函数。

反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。

边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。

第三章 动态规划

动态规划的基本思想:

动态规划算法与分治法类似,其思想把求解的问题分成许多阶段或多个子问题,然后按顺序求解各子问题。最后一个阶段或子问题的解就是初始问题的解。

分治法求解时,子问题数目太多,从而导致解决原问题需要耗费指数级时间。 与分治法不同的是,动态规划中分解得到的子问题往往不是互相独立的。

但不同子问题的数目常常只有多项式级。用分治法求解时,有些子问题被重复计算了许多次。

动态规划的适用条件:

动态规划法解所能解决的问题一般具有以下两个基本因素:

一、最优子结构性质

当问题的最优解包含着其子问题的最优解时,称该问题具有最优子结构性质。

二、重叠子问题性质

递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质。

其它同分治法。

动态规划问题的特征:

求解的问题是组合优化问题;

求解过程需要多步判断,从小到大依次求解;

子问题目标函数最优解之间存在依赖关系;

动态规划算法设计的基本步骤和要素:

基本步骤:

(1)找出最优解的性质,并刻画其结构特征。(考察是否适合采用动态规划法。)

(2)递归地定义最优值。(建立递归式或动态规划方程)

(3)以自底向上的方式(或以自顶向下的备忘录方法)计算出最优值。

(4)根据计算最优值时得到的信息,构造最优解。

要素:

最优子结构

重叠子问题

备忘录(表格)

应用实例分析:

1、矩阵连乘问题:

(1)分析最优解结构:

计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解,满足最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。

(2)建立递归关系;

(3)计算最优值—递归求解(递归求解最优值复杂度较高的原因是:子问题重复度高); 计算最优值—迭代查表求解

计算最优值—备忘录求解

(4)构造最优解

第四章 贪心法

贪心算法的基本思想:

当一个问题具有最优子结构性质时,可用动态规划方法求解,但有时会有更简单有效的方法。

顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。

贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。 在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法中,较大子问题的解恰好包含了较小子问题的解作为子集,这与动态规划算法设计中的优化原则本质上是一致的。

动态规划算法在某一步决定优化函数的最大或最小值时,需要考虑到它的所有子问题的优化函数值,然后从中选出最优的结果;贪心算法的每步判断时,不考虑子问题的计算结果,而是根据当时情况采取“只顾眼前”的贪心策略决定取舍。

贪心算法的设计要素:

可以用贪心算法求解的问题一般具有2个重要的性质:

1、最优子结构性质:

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征

2、贪心选择性质:

贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法与动态规划算法的主要区别。

动态规划算法通常以自底向上的方式求解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。

对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。

应用实例:

1、活动安排问题:

第五章 回溯法

回溯法的基本思想:

回溯法的使用条件:

回溯法适用于搜索问题和优化问题。

回溯法的设计要素:

针对问题定义解空间:

问题解向量

解向量分量取值集合

构造解空间树

两类典型的解空间树:

子集树:当所给的问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间树称为子集树。子集树通常有2n个叶结点

排列树:当所给的问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。排列树通常有n!个叶结点。

判断问题是否满足多米诺性质。

搜索解空间树,确定剪枝函数。

确定存储搜索路径的数据结构。

第六章 分支限界法

分支限界法的基本思想:

分支界限法类似与回溯法,也是在问题解空间中搜索问题解的一种算法。

分支界限法与回溯法思想对比:

求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

常见的两种分支界限法:

队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

最大堆:最大效益优先

最小堆:最小耗费优先

 

第二篇:算法分析与设计总结

10008148 朱凌峰

分析与设计总结

算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。

一个算法应该具有以下五个重要的特征:

1、有穷性: 一个算法必须保证执行有限步之后结束;

2、确切性: 算法的每一步骤必须有确切的定义;

3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;

4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。

算法复杂度

算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看

成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。

一个算法应该具有以下五个重要的特征:

1、有穷性: 一个算法必须保证执行有限步之后结束;

2、确切性: 算法的每一步骤必须有确切的定义;

3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;

4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。

常用算法分为以下五种:

分治法

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题??直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)??

常用算法之回溯法

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 动态规划法

最优化原理是动态规划的基础。“一个过程的最优决策具有这样的性质:即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略”。简言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。

贪心算法 贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生

整体最优解或者是整体最优解的近似解。、

分支限界法 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题??直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。