光电效应测定普朗克常数实验报告评分标准

《光电效应测定普朗克常数》实验报告评分标准

一 实验预习(20分)

 学生进入实验室前应预习实验,并书写实验预习报告。预习报告应包括:①实验目的,②实验原理,③实验仪器,④实验步骤 ⑤实验数据记录表等五部分。 以各项表述是否清楚、完整,版面是否整洁分三段给分。

预习报告不合格者,不允许进行实验。该实验应重新预约,待实验室安排时间后进行实验(实验前还应预习实验)。

二 实验操作过程(20分)

   学生在教师的指导下进行实验。操作过程分三步,第一步使用光电效应实验仪测量不同光波频率下对应的I-U值,包括 ①仪器预热,②微电流表的调零满度校准,③选择合适的实验条件进行测量;第二步实验数据记录;第三步实验仪器整理。以各项是否能够按照实验要求独立、正确完成,数据记录是否准确、正确分三段给分。

三 实验纪律(10分)

   学生进入实验室,按照学生是否按规定进入实验室,是否按照操作要求使用仪器,是否在实验结束后将仪器整理整齐,是否有大声喧哗、打闹现象。分三段给分。

     以上三项成绩不足30分者,表示实验过程没有完成,应重新预约该实验。实验完成后,学生课后完成一份完整的实验报告。

四、数据记录及处理(35分)

1 数据记录是否与课堂实验记录一致,书写是否准确,分三段给分。

2数据记录及处理

学生在数据处理过程中,是否按照要求正确书写中间计算结果、最终实验结果和不确定度的有效数字位数,分三段给分。

二、思考题(10分)

    学生在实验结束后,在三道思考题中选择两道,抄写题目并回答。按照问题回答是否准确,有自己的见解,分三段给分。

三、格式及版面整洁(5分)

   按照学生实验报告书写是否整洁,分三段给分。

《光电效应测定普朗克常数》技能测试评分标准

    学生进入实验室,用15分钟的时间看书,15分钟之后将书收起来,开始进行实验测试。测试期间禁止看书。评分标准如下:

一 实验操作部分(70分)

第一步:使用光电效应实验仪测量不同光波频率下对应的I-U值。

1实验准备。光阑转盘是否旋转到盖住光电管暗盒窗口光窗,光电管暗盒是否离开光源20—30cm,汞灯、微电流测量放大器是否预热,仪器摆放布局是否得当。分四段给分。

2微电流表的调零满度校准。

①光电管屏蔽电缆电流线和电压线断开是否,转换开关是否偏置于“ ”; “电流调节”旋钮是否旋转至右侧“校准”档,“校准”旋钮使电流表至数显“-100.00”。分四段给分。

②“电流调节”旋钮置于“短路”,调节数显电流表下面的“调零”旋钮使电流表至数显“00.0”,分四段给分。

3测量不同光波频率下对应的I-U值。

①转换开关是否偏置于“测量 ”档,屏蔽电缆(电流线)及地线和阴极电压线是否连接,“电流调节”旋钮是否选择合适的量程。电管暗盒窗口是否对准光阑通光孔并用螺钉轻轻固定,是否选择365.0nm滤光片,是否选择合适的光阑入射光孔径。分四段给分。

②调节电压从-2V~2V,每隔0.1V快速测量一次,在拐点附近每隔0.05V测一次,记录一组对应的电压电流值填入表格中。分四段给分。

③注意随时改变电流表量程,使之既有示值,又不超量程;当电流表数显超过140后,必须更换更大的量程,以免造成读数误差。在附近尽量不换量程,否则量程误差会给曲线造成附加台阶,影响数值求导的效果。电流如果太大或太小,则需调节汞灯距离或选择光阑通光孔径的大小,改变入射光强。分四段给分。

④要按照波长递增的顺序,依次更换404.7 nm、435.8 nm、546.1 nm、577.0 nm滤光片,测出不同光频率的I-U值。分四段给分。

⑤仪器整理。是否能够将仪器归位,“电流调节”旋钮预置于“短路”档位,“电压调节”旋钮是否反时针调到底,光阑转盘是否旋转到盖住光电管暗盒窗口,关闭电源。分四段给分。

二、实验报告及数据分析部分(30分)

1、实验目的、简单原理介绍是否清晰、整齐。分四段给分。

2、是否有准确的实验步骤、数据表格,且清晰、整齐。分四段给分。

3、实验数据处理是否正确,是否按照要求正确书写中间计算结果、最终实验结果和不确定度的有效数字位数。分四段给分。

                     

 

第二篇:光电效应测普朗克常数-实验报告

光电效应测普朗克常数实验报告

【实验目的】

1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;

2、掌握用光电管进行光电效应研究的方法;

3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

【仪器用具】                           

高压汞灯及电源、滤色片(五个)、光阑(两个)、光电管、微电流放大器、光电管

【实验原理】

1、光电效应与爱因斯坦方程

用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为

式中, 为普朗克常数,它的公认值是 =6.626

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程:

                   (1)

式中,为入射光的频率,为电子的质量,为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。

   显然,有

                      (2)

代入(1)式,即有

                       (3)

由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子的频率成正比,,将(3)式改写为

                  (4)

上式表明,截止电压是入射光频率的线性函数,如图2,当入射光的频率时,截止电压,没有光电子逸出。图中的直线的斜率是一个正的常数:

                           (5)

由此可见,只要用实验方法作出不同频率下的曲线,并求出此曲线的斜率,就可以通过式(5)求出普朗克常数。其中是电子的电量。

U0-v 直线

2、光电效应的伏安特性曲线

下图是利用光电管进行光电效应实验的原理图。频率为、强度为的光线照射到光电管阴极上,即有光电子从阴极逸出。如在阴极K和阳极A之间加正向电压,它使K、A之间建立起的电场对从光电管阴极逸出的光电子起加速作用,随着电压的增加,到达阳极的光电子将逐渐增多。当正向电压增加到时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即称为饱和光电流。

光电效应原理图

由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零。

爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:

(1)暗电流和本底电流存在,可利用此,测出截止电压(补偿法)。

(2)阳极电流。制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。由于它们的存在,使得I~U曲线较理论曲线下移,如下图所示。

伏安特性曲线

【实验步骤】

 1、调整仪器

 (1)连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

 (2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。每换一次量程,必须重新调零。

 (3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

2、测量普朗克常数

(1) 将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于A档。将测试仪电流输入电缆断开,调零后重新接上。

(2) 将直径为4mm的光阑和365.0nm的滤色片装在光电管电暗箱输入口上。

(3) 从高到低调节电压,用“零电流法”测量该波长对应的,并数据记录。

(4) 依次换上404.7nm、435.8nm、546.1nm、577.0nm的滤色片,重复步骤(1)、(2)、(3)。

(5)测量三组数据你,然后对取平均值。

[实验数据及处理]

【实验分析讨论】

五、     误差分析

对于普朗克常量的确定,是通过测不同频率下的截止电压的大小来得到的。而其主要误差也就是在这一测量过程中产生的。查阅有关资料知为了能准确测定普朗克常数, 实验中所用的光电管必须具备下列条件:

(1) 对可见光区域内所有谱线都较灵敏;

(2) 阳极包围阴极, 这样当阴极有负电位时, 大部分光电子都能到达阳极;

(3) 阳极没有光电效应, 不会产生反向电流;

(4) 光电管的暗电流很小;

(5) 减小或避免杂散光的影响。

综合其它的影响可知,在实验中的主要误差有:

1.   光电管中暗电流的影响;

2.   滤色片产生的滤色光并不完全单一;

3.   实验汞灯受交变电压影响而不能完全稳定;

4.   仪器读数微小跳动的读数误差;

5.   暗箱封闭不严而受杂质光的影响。

6.   测量过程中产生的反向电流的影响;

对于以上各种误差,分析可知,由于实验中产生的暗电流很小(低于实验测量的精度)故1暗电流的影响可忽略不计;而对于2、5的影响可通过仪器采购途径实现;而对于3个人认为可以通过在装置前加稳压器来实现微小电压扰动对实验的影响;对4完全可通过操作者本人的良好的实验习惯来实现。

最后,对于6中反向电压的影响,查阅有关资料知:光电管在制造的过程中,很难保证阳极不被阴极材料所污染(即阴极表面的低逸出功材料溅射到阳极上)。而且查知这种污染会在光电管的反复使用过程中日趋加重,造成被污染后的阳极逸出功降低。当从阴极反射过来的散射光照到它时便会发射出光电子而形成阳极光电流-----反向电流。使得实验结果产生一定的偏差。而对此我们可通过切断阴极反射过来的散射光与阳极间的联系从而避免反向电流的影响。

7.   实验者自身的影响:

(1)从不同频率的伏安特性曲线读到的“抬头电压”(截止电压),不同人读得的不一样,经过处理后的到U s____ v曲线也不一样,测出的数值就不一样;(2)调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确。

8.   参考值本身就具有一定的精确度,本身就有一定的误差。

9.   理论本身就有一定的误差,例如,1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射。1968年Teich 和Wolga用GaAs激光器发射的hn=1.48eV的光子照射逸出功为A=2.3eV的钠金属时,发现光电流与光强的平方成正比。按爱因斯坦方程,光子的频率处于钠的阀频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比。于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射。后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射。人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比。

【实验改进方案】

a.针对本底电流产生的原因,可设计一个遮光罩,罩住从汞灯到光电管这段测量线路,来减少周围杂散光对实验的影响。

b.实验中电流数据会有微小跳动,可能是由于逸出的光电子朝各个方向运动的都有,而光电倍增管没有及时捕捉到所有的光电子,从而产生跳动,可对光电倍增管进行改进。再者,光子本来就是一份一份的,打在阴极板上,不可能每时每刻的光量子都相同,并且经过空气,加上电流传输的过程中对电源电压的影响以及电子的飘逸,导致了电流数值的跳动。

c.在实验过程中,更换滤色片本身就比较麻烦,而且要记得盖住汞灯出光孔,这就是给实验带来很多不确定的影响因素。更换过程中散光对实验可能会有更大的影响,可设计一个盘形的装置,滤色片可安在上面,通过旋转就可更换滤色片,这样可减少人为的误差。

d.在测截止电压是,会发现电流为零时电压的数值不是某个具体数值而是一个电压范围,这是我们去截止电压应该取平均值,这样处理的过程会更准确。

【注意事项】

1.  微电流测量仪和汞灯的预热时间必须长于20分钟,连线时务必先接好地线,后接信号线。切勿让电压输出端A与地短路,以免损坏电源。微电流测量仪每改变一次量程,必须重新调零。

2.  实验中,汞灯如果关闭,必须经过5分钟后才可重新启动。

3.  微电流测量仪与暗盒之间的距离在整个实验过程中应当一致。

4.  注意保护滤光片,勿用手触摸其表面,防止污染。

5.  每次更换滤光片时,必须遮挡住汞灯光源,避免强光直接照射阴极而缩短光电管寿命,实验完毕后用遮光罩盖住光电管暗盒进光窗。

六、     实验总结、感想

本次实验,操作起来并不复杂,但是要想真正的弄懂其原理的本质还是有一定的难度的。通过实验中的各组现象,在某些方面有效地验证了爱因斯坦的光电效应方程的准确性。另外,在本次实验中,对于操作的严密性要求比较高,有助于培养了我们得严谨务实的态度,而这正是我们日后在研究中必备的一项素质。而这种在实验后对实验的来龙去脉进行研究性的分析,在使我们具备操作动手能力的同时也培养了我们的自主动脑能力,对于我们更好地实验有很好的帮助,使得在以后的实验中能够积极地去思考问题,而不仅仅是把这个实验做完了就结束了,还得更深入的去了解。

相关推荐