材料压缩实验报告

实验三  压缩实验

一、实验目的

1.测定压缩时低碳钢的屈服极限和铸铁的强度极限

2.观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较和分析原因。

二、设备和量具

    1.手动数显材料试验机sscs-100;

    2.游标卡尺。

三、实验原理及步骤

    低碳钢和铸铁等金属材料的压缩试样一般制成圆柱形,高ho与直径do之比在1~3  的范围内。目前常用的压缩试验方法是两端平压法。这种压缩试验方法,试样的上下两端与试验机承垫之间会产生很大的摩擦力,它们阻碍着试样上部及下部的横向变形,导致测得的抗压强度较实际偏高。当试样的高度相对增加时,摩擦力对试样中部的影响就变得小了,因此抗压强度与比值ho/do有关。由此可见,压缩试验是与试验条件有关的。为了在相同的试验条件下,对不同材料的抗压性能进行比较,应对ho/do的值作出规定。实践表明,此值取在1~3的范围内为宜。若小于l,则摩擦力的影响太大;若大于3,虽然摩擦力的影响减小,但稳定性的影响却突出起来。

    低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不象拉伸那样明显。从进入屈服开始,试样塑性变形就有较大的增长,试样截面面积随之增大。由于截面面积的增大,要维持屈服时的应力,载荷也就要相应增大。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的PS要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷PS。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的的拐点来判断和确定PS

低碳钢的压缩图(即P一△1曲线)如图3—1所示,超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形,即如图3—3。继续不断加压,试样将愈压愈扁,但总不破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大),低碳钢的压缩曲线也可证实这一点。

 

图3-1  低碳钢压缩图                  图3-2  铸铁压缩图

灰铸铁在拉伸时是属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷Pb前将会产生较大的塑性变形,最后被压成鼓形而断裂。铸铁的压缩图(P一△1曲线)如图3—2所示,灰铸铁试样的断裂有两特点:一是断口为斜断口,如图3—4所示。

    图3-3  压缩时低碳钢变形示意图      图3-4  压缩时铸铁破坏断口

二是按Pb/A0求得的远比拉伸时为高,大致是拉伸时的 3—4倍。为什么象灰铸铁这脆性材料的抗拉抗压能力相差这么大呢?这主要与材料本身情况(内因)和受力状态(外因)有关。铸铁压缩时沿斜截面断裂,其主要原因是由剪应力引起的。假使测量铸铁受压试样斜断口倾角,则可发现它略大于45o而不是最大剪应力所在截面,这是因为试样两端存在摩擦力造成的。

四、试验步骤

    1.低碳钢试样的压缩实验

    l)测定试样的截面尺寸——用游标卡尺在试样高度中央取一处予以测量,沿两个互相垂直的方向各测一次取其算术平均值作为do来计算截面面积Ao。用游标卡尺测量试样的高度。

    2)试验机的调整——估算屈服载荷的大小,选择测力度盘,调整指针对准零点,并调整好自动绘图仪。

    3)安装试样——将试样准确地放在试验机活动平台承垫的中心位置上。

    4)检查及试车——试车时先提升试验活动平台,使试样随之上升。当上承垫接近试样时,应大大减慢活动台上升的速度。注意:必须切实避免急剧加载。待试样与上承垫接触受力后,用慢速预先加少量载荷,然后卸载接近零点,检查试验机包括自动绘图部分)工作是否正常。

    5)进行试验——缓慢均匀地加载,注意观察测力指针的转动情况和绘图纸上曲线,以便及时而正确地确定屈服载荷,并记录之。

屈服阶段结束后继续加载,将试样压成鼓形即可停止。

    2.铸铁试样的压缩实验

    铸铁试样压缩试验的步骤与低碳钢压缩试验基本相同,但不测屈服载荷而测最大载荷。此外,要在试样周围加防护罩;以免在试验过程中试样飞出伤人。

 

第二篇:材料拉伸压缩实验报告

材料的拉伸压缩实验

一、实验目的

1.      观察试件受力和变形之间的相互关系;

2.      观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象;观察铸铁在压缩时的破坏现象。

3.      测定拉伸时低碳钢的强度指标(sssb)和塑性指标(dy);测定压缩时铸铁的强度极限sb

4.      学习、掌握电子万能试验机的使用方法及工作原理。

二、实验设备

1.      微机控制电子万能试验机;

2.      游标卡尺。

三、实验材料

拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示:

 


图1  拉伸试件                          图2  压缩试件

四、实验原理

1、拉伸实验

低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-Dl曲线,即低碳钢拉伸曲线,见图3。

对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于Dl,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B¢点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用ss=Fs/ A0A0为试件变形前的横截面积)计算屈服极限。

图3  低碳钢拉伸曲线

屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷Fb后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式sb=Fb/A0计算强度极限(A0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率d和端面收缩率y,即

式中,l0l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。

2、压缩实验

铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-Dl曲线,即铸铁压缩曲线,见图4。

 

对铸铁材料,当承受压缩载荷达到最大载荷Fb时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45°~55°的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。

材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。

铸铁压缩实验的强度极限:sb=Fb/A0A0为试件变形前的横截面积)。

五、实验步骤及注意事项

1、拉伸实验步骤

(1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0

(2)试验机准备:按试验机®计算机®打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。

(3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已安装好,对夹具进行检查。

(4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。

(5)开始实验:点击主机小键盘上的试样保护键,消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l1及断口处的最小直径d1(一般从相互垂直方向测量两次后取平均值)。

2、   压缩实验步骤

(1)试件准备:用游标卡尺在试件中点处两个相互垂直的方向测量直径d0,取其算术平均值,并测量试件高度h0

(2)试验机准备:按试验机®计算机®打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。

(3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已安装好,对夹具进行检查。

(4)放置试件:试验力清零;把试件放在压盘中间,通过小键盘调节横梁位置,通过肉眼观察,到上压盘离试件上平面还有一定缝隙时停止。(注意:尽量将试件放在压盘中心,如放偏的话对试验结果甚至是试验机都有影响。)

(5)开始实验:位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件压断后,取下试件;记录强度载荷Fb

六、实验数据记录及处理结果

1.低碳钢F-l拉伸曲线

2.实验数据及数据处理

3.铸铁F-△l压缩曲线

3.       铸铁的极限强度:

4.       铸铁断口呈不平整状,是典型的脆性断裂;低炭钢断口外围光滑,是塑性变形区域,中部区域才呈现脆性断裂的特征。这表明,铸铁在超屈服应力下,瞬时断开;而低碳钢在超应力的时候,有塑性形变过程,发生颈缩,直到断面面积减小到一定程度时,才瞬时断裂。

相关推荐