学物理演示实验报告

学物理演示实验报告--避雷针
一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。二、原理首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。三、装置一个尖端电极和一个球型电极及平板电极。四、现象演示让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的实验六十五 跳环式楞次定律

【实验目的】

利用通电线圈及线圈内的铁芯所产生的变化磁场与铝环的相互作用,演示楞次定律。

【实验器材】

楞次定律演示仪,铝环(3个)。如图65-1所示。

开口环 闭合环 底座

带孔环

图 65-1

【实验原理】

当线圈通有电流时,在铁芯中产生交变磁场,穿过闭合的铝环中的磁通量发生变化。根据楞次定律,套在铁芯中的铝环将产生感生电流,感生电流的方向与线圈中的电流方向相反。因此与原线圈相斥,相斥的电磁力使得铝环上跳。

【实验操作与现象】

1.闭合铝环的演示

打开演示仪电源开关,将闭合铝环套入铁棒内按动操作开关。当操作开关接通时,则闭合铝环高高跳起,保持操作开关接通状态不变,闭合铝环则保持一定高度,悬在铁棒中央。断开操作开关时,闭合铝环落下。

2.带孔铝环的演示

把闭合铝环取下,将带孔的铝环套入铁棒内按动操作开关。当操作开关接通时,则带孔的铝环也向上跳起,但跳起的高度没有闭合铝环高。保持操作开关接通状态不变,带孔的铝环也保持一定高度,悬在铁棒中央某一位置,但还是没有闭合铝环悬的高。断开操作开关时,带孔的铝环落下。这是由于带孔的铝环产生的感生电流没有闭合铝环大,所以带孔的铝环没有闭合铝环跳的高。

3.开口铝环的演示

把带孔的铝环取下,将开口铝环套入铁棒内按动操作开关。当操作开关接通时,开口铝环静止不动。这是由于开口铝环没有形成闭合回路,无感生电流,没有受到电磁力的作用,故静止不动。

4.演示完毕后,关闭楞次定律演示仪电源。

【注意事项】

不要长时间按动操作开关,以免使线圈过热而损坏。

阻尼摆与非阻尼摆

【实验目的】

演示涡电流的机械效应。

【实验器材】

阻尼摆与非阻尼摆演示仪,如图66-1所示。其中①直流电源接线柱;②矩形磁轭,作用是当线圈中通有直流电源时,可在磁轭两极缝隙中间产生很强的磁场;③支撑架;④摆架;⑤非阻尼摆;⑥横梁;⑦阻尼摆;⑧线圈;⑨底座。直流稳压电源。

【实验原理】

处在交变电磁场中的金属块,由于受变化电磁场产生的感生电动势作用,将在金属块内引起涡旋状的感生电流,把这种电流称为涡电流。

在图66-1所示的实验装置中,但金属摆在两磁极间摆动时,由于受切割磁力线运动产生的动生电动势的作用,也将在金属摆内出现涡电流。

根据安培定律,当金属摆进入磁场时,磁场对环状电流的上、下两段的作用力之和为零;对环状电流的左、右两段的作用力的合力起阻碍金属摆块摆进的作用。当金属块摆出磁场时,磁场对环状电流的左、右两段的作用力的合力则起阻碍金属摆块摆出的作用。因此,金属摆总是受到一个阻尼力的作用,就像在某种粘滞介质中摆动一样,很快地停止下来,这种阻尼起源于电磁感应,故称电磁阻尼。

若将图66-1中的金属摆制成有许多隔槽的,使得涡流大为减小,从而对金属摆的阻尼作用变的不明显,金属摆在两磁极间要摆动较长时间才会停止下来。

电磁阻尼摆在各种仪表中被广泛应用,电气机车和电车中的电磁制动器就是根据此原理而制造的。

【实验操作与现象】

图 66-1

1.把稳压电源输出的正负极连接到阻尼摆与非阻尼摆演示仪的直流电源接线柱,阻尼摆按图66-1所示接好。

2.打开稳压电源电源开关,先不要打开稳压电源的“输出”开关,即不通励磁电流,让阻尼摆在两极间作自由摆动,可观察到阻尼摆经过相当长的时间才停止下来(不考虑阻力)。

3.再打开稳压电源的“输出”开关,电压指示为28伏,此时在磁轭两极间产生很强的磁场。当阻尼摆在两极间前后摆动时,阻尼摆会迅速停止下来,说明了两极间有很强的磁阻尼。解释现象。

4.将带有间隙的类似梳子的非阻尼摆代替阻尼摆作上述2和3的实验,可以观察到不论通电与否,其摆动都要经过较长的时间才停止下来。为什么?

【注意事项】

1.操作前应把矩形磁轭和支撑架调整到位,确保摆动顺畅。

2.注意不要长时间通电,以免烧坏线圈。

实验六十七 通电、断电自感现象

【实验目的】

演示通电、断电自感现象,了解产生自感的原因。

【实验器材】

通电、断电自感演示仪。

【实验原理】

线圈中电流i发生改变时,通过自身回路的磁通量ψn发生变化,从而产生自感电动势。理论计算表明

εi??Ldi (67-1) dt

式中L称为自感系数(电感)。

由式(67-1)可知,在通电时,因为自感作用使的电流缓慢增加。当在断电瞬间,因为di相当大,从而产生一个相当高的自感电动势。 dt

实验原理图如67-1所示, ~220V交流电压经变压器降压、桥式全波整流电容滤波之后输出直流电源E。由于通电的一瞬间、电感L会产生一个自感电动势。同样,断电的瞬间,电感L也会产生一个自感电动势。

K1

+ E ~220伏

K

图 67-1 L L2

【实验操作与现象】

1.通电自感现象

首先将K1、K2断开,再接通交流电源,按下K1开关,同时观察灯泡L1和L2亮的顺序。可看到当K1接通的瞬间, 灯泡L1先亮,灯泡L2滞后L1才亮。这是由于K1接通瞬间,L1直接并接在电源E上,所以接通后,它马上就亮;而L2是与电感L串联之后才并接在电源上的,电感L会产生一个自感电动势,使得L2滞后于L1。这就充分说明了通电时的自感现象。为了看的清楚可以反复将K1接通和断开。

2.断电自感现象

将K1、K2断开,接通交流电源,按下K1开关,此时灯泡L1和L2都亮着,可顺便观察通电自感现象。将K2合上,即将L2短路,再把K1断开,即断开直流电源E,同时注意观察。可以发现在断电的瞬间,L1突然亮了一下,比正常通电时还亮,这就是断电自感现象。由于,断电的瞬间,电感L也会产生一个自感电动势,并通过L1放电,使得L1发光。为了观察清楚,可以反复将K1通断。

【注意事项】

1.因为演示板背后电源变压器初级为~220V,切勿触摸,防止触电。

2.演示仪不能承受剧烈振动,防止将灯泡振坏。

实验六十八 磁聚焦实验

【实验目的】

演示运动电荷在磁场中受到的洛仑兹力和磁场对电子束的聚焦作用。

【实验器材】

示波管,聚焦线圈,磁场开关,电源开关,灰度调节,位移调节,线圈电源插座。其中电源电压交流220V,示波管采用8SJ31J示波管,其加速电压为1100V,外型尺寸400×280×260mm。如图68-1所示。

线圈电源插座

电源开关

图 68-1

【实验原理】

??如图68-2所示,当带电粒子沿与磁场B成θ角方向以速度v斜向进入磁场时,磁场对

其v?的分运动作用,使之在垂直B的平面内作匀速率圆周运动,磁场对v//的分运动无作用,粒子在沿B方向上作匀速直线运动。结果带电粒子沿B方向作螺旋线运动。

距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生。

 

第二篇:物理演示实验报告

物理演示实验报告

专业:应用物理 班级:08405021

在这个学期,老师给我们开了选修实验课,就是去观看一些具有代表性的演示实验。在星期六和星期天的上午的第三,四节课和下午我们选修了这个实验课的同学来到来了学校的物理演示实验室,以期待理论和实践的相结合能更有利于对知识的掌握。因为这个学期学习的主要内容是振动、光学和热学的知识,我们就重点观看和操作了这方面的实验。

首先让我感到“好玩”是那几个可爱的蜡娃娃。它们在信号源电源不断调节的时候,总会有一个表现的比较活泼爱动,把头摇的特别疯狂。其它的呢,要么低头不吭声,要么只是轻轻的来回晃。接着,看见了类似琴弦的东西——弦驻波。这确实是一种很特别的现象,也和平时用一根绳子绷紧时看到的差不多。驻波中既没有相位的空间移动,也没有能量的定向传播,各点均在自己的平衡位置附近作简谐振动,总是固定有若干各振幅最大处点(波腹)和振幅最小为零的点(波节)。然后是和它道理相同,只是由纵波引起的纵驻波。 它的原理就是在阻抗不匹配的情况下(弦的特征阻抗不等于端点负载阻抗),会发生反射。 阻抗可以定义为力除以速度。对于固定的端点,速度为零,因此阻抗无穷。此时发生全反射,而且反射波相位跃变180度(这叫半波损失)。

入射波假设写成Acos(wt-kx),那么反射波为Acos(wt+kx+π),其中k为波数表示传递方向。两个式子相加,利用三角函数的和差化积公式,就得到:

Acos(wt-kx)+Acos(wt+kx+π)= 2A *sin(wt)* sin (kx)

这便是驻波。时间部分和空间部分分离,只在原地振荡,不向前传播。形成驻波通常就是两个传播方向相反的行波,利用反射叠加。

驻波从最基本的物理到最前沿的比如量子光学里的Cavity QED(可以用作单光子发射器)都是很重要的概念。

接下来的实验,如果你没有学过理论的话,一定会让你不可思议的,这就是温差电势。放在你面前的就是一台有两个手掌印和一个灵敏电表的仪器,当你好奇的用手按在两种不同的金属上时,面板上的灵敏电表的指针就会向右偏转,而且你的手上的温度越高时,指针的偏移幅度越大,由此,我想到了一些大型机器中某些功能的实现思想。

温差电势仪的原理就是塞贝克效应,又称作第一热电效应,它是指由于温差而产生的热电现象。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。

半导体的温差电动势较大,可用作温差发电器。1821年,赛贝克发现,把两种不同的金属导体接成闭合电路时,如果把它的两个接点分别置于温度不同的两个环境中,则电路中就会有电流产生。这一现象称为塞贝克效应,这样的电路叫做温差电偶,这种情况下产生电流的电动势叫做温差电动势。例如,铁与铜的冷接头为1℃,热接头处为100℃,则有5.2mV的温差电动势产生。 由于不同的金属材料所具有的自由电子密度不同,当两种不同的金属导体接触时,在接触面上就会发生电子扩散。电子的扩散速率与两导体的电子密度有关并和接触区的温度成正比。设导体A和B的自由电子密度为NA和NB,且有NA>NB,电子

扩散的结果使导体A失去电子而带正电,导体B则因获得电子而带负电,在接触面形成电场。这个电场阻碍了电子继续扩散,达到动态平衡时,在接触区形成一个稳定的电位差,即接触电势。

之后的光栅衍射虽不能说很奇妙,但至少是一件不太平常的事情,因为透过它,可以观察到彩色的条纹,它是多个单缝衍射和多个干涉光干涉后叠加的结果。根据夫琅禾费衍射理论,当一束波长为λ的平行光垂直投射到光栅平面时,光波将在每个狭缝处发生衍射,经过所有狭缝衍射的光波又彼此发生干涉,这种由衍射光形成的干涉条纹是定域于无穷远处的。若在光栅后面放置一个汇聚透镜,则在各个方向上的衍射光经过汇聚透镜后都汇聚在它的焦平面上,得到的衍射光的干涉条纹根据光栅衍射理论,衍射光谱中明条纹的位置由下式决定: (k=1,2,3,?)(1)

上式称为光栅方程,式中是相邻两狭缝之间的距离,称为光栅常数,λ为入射光的波长,k为明条纹的级数,是k级明条纹的衍射角,在衍射角方向上的光干涉加强,其它方向上的光干涉相消。

当入射平行光不与光栅平面垂直时,光栅方程应写为

(k=1,2,3,?)(2)

式中i是入射光与光栅平面法线的夹角。所以实验中一定要保证入射光垂直入射。

如果入射光不是单色光,而是包含几种不同波长的光,则由式(1)可以看出,在中央明条纹处(k=0、=0),各单色光的中央明条纹重叠在一起。除零级条纹外,对于其他的同级谱线,因各单色光的波长λ不同,其衍射角也各不相同,于是复色入射光将被分解为单色光,如图1所示。因此,在透镜焦平面上将出现按波长次序排列的单色谱线,称为光栅的衍射光谱。相同k值谱线组成的光谱就称为k级光谱。

这里要说的是在观察立体图形,我们用肉眼看到的是一副颜色明暗的图片,海豚在海里自由自在的游着,飞机在天空翱翔,栏杆向远处延伸……这些都是我们用我们的肉眼看到的,当我们带上3D眼镜时,一副奇怪的画面展示在我们面前,海豚就像是游到了你的跟前,飞机像在你的面前飞行,栏杆突出了画面来到了你的脚前,像你能一脚踏上去似的,这些是多么的美妙啊!观察到这些现象就想起了这些现象的原理:人有两只眼,两只眼有一定距离,这就造成物体的影象在两眼中有一些差异,由于物体与眼的距离不同,两眼的视角会有所不同,由于视角的不同所看到是影象也会有一些差异,大脑会根据这种差异感觉到立体的景象。 三维立体画就是利用这个原理,在水平方向生成一系列重复的图案,当这些图案在两只眼中重合时,就看到了立体的影象。

立体画有两种形式:第一种是由相同的图案在水平方向以不同间隔排列而成,看起来是远近不同的物体.另一种立体画较复杂,在这种立体画上你不能直接看到物体的形象,画面上只有杂乱的图案.两种作品看法是一样的,原理都是使左眼看到左眼的影象,让右眼看到右眼的影象(平时我们左右眼看到的图像是要聚焦重叠在一起的),就看到立体图像了。

最后要说的是三维立体电视,也不知道我们学校的立体碟片坏了还是立体DVD坏了,我们弄了好久就是放不出来。在一次不知道是不是偶然的情况下,我们放出了一小段影片,在戴上特殊的眼睛后,我们能看到鸟儿和那些影片上的事物都在你周围,什么东西都好像朝你冲来似的,我们就像身临其境。但是后面试了好多次我们都没有再放出来,这是我这次观看演示实验最大的遗憾!

这些都是我们看到的实验现象,还有很多,在这不能全部说来,只能写出几个自己体会之后理解深透的几个实验,同时也得到一些感悟:观看演示实验的过程是简单的,但它的意义绝非如此。我们学习的知识重在应用,对大学生来说,这就是一个很好的途径。通过它,我们不但对大自然产生了以前没有的敬畏和尊重,也有了对大自然探究的好奇心和奋进力,我想这是一个人做学问最最重要的一点。因此我想在我们平时的学习中,要带着一种崇敬的心情和责任感,认认真真地学习,踏踏实实地学习,只有这样,我们才能真正学会一门课,学好一门课。

相关推荐