物理实验报告

物理实验报告

一、实验名称: 霍尔效应原理及其应用

二、实验目的:

1、了解霍尔效应产生原理;

2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;

3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;

4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)

四、实验原理:

1、霍尔效应现象及物理解释

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。

设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:

(1-1)

因为 , ,又根据 ,则

(1-2)

其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :

(1-3)

(1—4)

为霍尔元件灵敏度。根据RH可进一步确定以下参数。

(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。

(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:

(1-5)

2、霍尔效应中的副效应及其消除方法

上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。

(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。

(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。

(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。

(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。

综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:

, :

, :

, :

, :

然后求 , , , 的代数平均值得:

通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为

(1-6)

3、直螺线管中的磁场分布

1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。

(1-7)

2、直螺旋管离中点 处的轴向磁感应强度理论公式:

(1-8)

式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。

X=0时,螺旋管中点的磁感应强度

(1-9)

五、 实验内容:

测量霍尔元件的 、 关系;

1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。

2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。

3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。

4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。

6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

测量长直螺旋管轴向磁感应强度

1、取 =10 mA, =900mA。

2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。

3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。

4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。

六、 注意事项:

1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。

2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。

3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。

4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。

七、 数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm

表1 关系 ( =900mA)

(mV) (mV) (mV) (mV)

1.00 0.28 -0.27 0.31 -0.30 0.29

2.00 0.59 -0.58 0.63 -0.64 0.61

3.00 0.89 -0.87 0.95 -0.96 0.90

4.00 1.20 -1.16 1.27 -1.29 1.23

5.00 1.49 -1.46 1.59 -1.61 1.54

6.00 1.80 -1.77 1.90 -1.93 1.85

7.00 2.11 -2.07 2.22 -2.25 2.17

8.00 2.41 -2.38 2.65 -2.54 2.47

9.00 2.68 -2.69 2.84 -2.87 2.77

10.00 2.99 -3.00 3.17 -3.19 3.09

表2 关系 ( =10.00mA)

(mV) (mV) (mV) (mV)

0 -0.10 0.08 0.14 -0.16 0.12

100 0.18 -0.20 0.46 -0.47 0.33

200 0.52 -0.54 0.80 -0.79 0.66

300 0.85 -0.88 1.14 -1.15 1.00

400 1.20 -1.22 1.48 -1.49 1.35

500 1.54 -1.56 1.82 -1.83 1.69

600 1.88 -1.89 2.17 -2.16 2.02

700 2.23 -2.24 2.50 -2.51 2.37

800 2.56 -2.58 2.84 -2.85 2.71

900 2.90 -2.92 3.18 -3.20 3.05

表3 关系 =10.00mA, =900mA

(mV) (mV) (mV) (mV) B ×10-3T

0 0.54 -0.56- 0.73 -0.74 2.88

0.5 0.95 -0.99 1.17 -1.18 4.64

1.0 1.55 -1.58 1.80 -1.75 7.23

2.0 2.33 2.37- 2.88 -2.52 10.57

4.0 2.74 -2.79 2.96 -2.94 12.30

6.0 2.88 -2.92 3.09 -3.08 12.90

8.0 2.91 -2.95 3.13 -3.11 13.10

10.0 2.92 -2.96 3.13 -3.13 13.10

12.0 2.94 -2.99 3.15 -3.06 13.20

14.0 2.96 -2.99 3.16 -3.17 13.3

八、 数据处理:(作图用坐标纸)

九、 实验结果:

实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。

长直螺旋管轴向磁感应强度:

B=UH/KH*IS=1.33x10-2T 理论值比较误差为: E=5.3%

 

第二篇:中国石油大学(华东)油层物理实验报告 液体粘度及流变性测定实验

液体粘度及流变性测定实验

一、实验目的

1.学会旋转粘度计使用方法,测定脱气原油在不同温度和剪切速度下的粘度;

2.学会使用毛细管粘度计测定脱气原油在不同温度和剪切速度下的粘度;

3.掌握粘度随温度变化的规律。

二、实验原理

(1旋转粘度计由电机经变速带动转子作恒速转动。当转子在某种液体中旋转时,液体会产生作用在转子上的粘性力矩。液体的粘度越大,该粘性力矩越大;反之,液体的粘度越小,该粘性力矩也越小。该作用在转子上的粘性力矩由传感器检测出来,经仪器所带的微电脑处理后,可得出被测液体的粘度。

(2在一定温度下,当液体在直立的毛细管中,以完全湿润管壁的状态流动时,其运动粘度与流动时间成正比。测定时,通过实验测得的数据代入公式,则可计算出试样的粘度。

三、实验流程

(一)毛细管粘度计法的实验流程

图1 毛细管粘度计

1,6—管身;2,3,7—扩张部分;4—毛细管;5—支管

(二)旋转粘度计的实验流程

图2 旋转粘度计结构图

1—粘度计机头水准泡;2—液晶显示屏;3—外罩;—转子保护架;5—水浴槽;6—主机底座;7—主机底座水平调节旋钮(使水准泡居中);8—粘度计机头;9—操作键盘;10—转子连接头;11—转子

(三)微操作界面简介

图3 微电脑操作界面

四、实验操作步骤

(一)旋转粘度计法

(1)将脱气原油置于直径不小于70mm,高度不低于125mm的双层杯中。

(2)通过水浴准确控制原油的温度。

(3)调整仪器水平:将仪器的水准器气泡调至居中。

(4)估计原油的粘度范围,选择适宜的转子和转速。若估计不出原油的大致粘度时,应视为较高粘度。选用由小到大的转子(转子号由高到低)和由慢到快的转速。原则上高粘度的液体选用小转子(转子号高);低粘度的液体选用大转子(转子号低),快转速。为保证测量精度,测量时量程百分比读数应在10%~100%之间。如测量显示值闪烁,表示溢出或不足,应更换量程。

(5)缓慢调节升降旋钮,调整转子在原油中的高度,直至转子的液面标志(凹槽中部)和液面相平为至。

(6)选择好转子和转速档位后,按“确定”键,转子开始旋转,仪器开始进行测量。

(二)毛细管粘度计法

(1)在内径符合要求的清洁干燥的毛细管粘度计的支管6上套上橡皮管,并用手指堵住管身7的管口,同时倒置粘度计将管身4插入待测石油产品中,然后利用吸耳球、水流泵或其它真空装置将液体吸到标线b,注意不要使管身4、扩张部分2和3中的液体产生气泡或裂隙。当液面到达标线b时,将粘度计提起,使其迅速恢复正常状态。将管身4的管端外壁粘附的油擦去,并从支管6上取下橡皮管套在管身4上口。

(2)利用铅垂线从两个相互垂直的方向检测毛管是否垂直,将粘度计调整成垂直状态;

(3)利用管身4所在的橡皮管将待测石油产品吸入扩张部分2,使液面稍高于标线a,并且不要让毛细管和扩张部分2中的液体产生气泡或裂隙。

(4)记录液面由标线α流到标线b所需要的时间。至少重复测定4次,每次的流动时间与其算术平均值的差数不应超过算术平均值的0.5%,然后取不少于3次的流动时间所得的算术平均值作为平均流动时间t。

(5)按下式计算液体的运动粘度,即:

式中

——液体的动力粘度,

——粘度计常数;

——液体在测试温度下的密度,

——毛细管中液面由标线流到标线的时间,

五、实验数据处理

(一)绘制粘度—温度曲线

根据实验所得数据,如表1,绘制出粘度—温度曲线(图4):

表1 液体粘度及流变性测定数据

由上表中温度与粘度的数值利用origin绘制粘度—温度曲线如下:

图4 粘度—温度曲线

通过粘度—温度曲线我们可以看出,随着温度的上升,原油的粘度逐渐减小。这是因为随着温度的上升,原油分子的动能增加,体积膨胀,分子间距离增大,导致原油分子间的吸引力减小,所以粘度降低。

(二)利用毛细管粘度计法计算原有的动力粘度

已知实验仪器相关参数:

编号:19       :0.8mm       :0.03243       :0.83651

将实验所得的数据放于表2:

表2 毛细管粘度计法相关数据

流动时间的算数平均值为:

计算各个时间与平均时间的相对误差:

通过以上数据可知所得误差均小于允许误差,因此其平均时间:

结合仪器参数,可计算该原油的动力粘度为:

相关推荐