实验二 单结晶体管触发电路和单相半波可控整流电路

实验二 单结晶体管触发电路和单相半波可控整流电路

1.实验目的

(1)熟悉单结晶体管触发电路的工作原理,接线及电路中各元件的作用;

(2)观察单结晶体管触发电路各点的波形,掌握调试步骤和方法;

(3)对单相半波可控整流电路在电阻负载及电阻电感负载时的工作过程作全面分析;

(4)了解续流二极管的作用。

2.预习要求

(1)了解单结晶体管触发电路的工作原理;

(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感负载时的工作波形;

(3)掌握单相半波可控整流电路接不同负载时的计算方法。

3.实验器材

(1)DJDK-1型电力电子技术及电机控制实验装置;

(2)DJK01、DJK02、DJK03-1、DJK06、D42等挂箱;

(3)双踪示波器;

(4)万用表。

4.实验内容

(1)单结晶体管触发电路的调试;

(2)单结晶体管触发电路各点电压波形的观察并记录;

(3)单相半波整流电路带电阻性负载时特性的测定;

(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。

5.实验电路

(1)单结晶体管触发电路如图2-1所示

图2-1 单结晶体管触发电路原理图

图2-2触发路各点的电压波形(

触发电路原理:

由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。单结晶体管触发电路的各点波形如图2-2所示。          

(2)单相半波可控整流电路,如图2-3所示

图2-3 单相半波可控整流电路

6.实验内容及步骤

(1)单结晶体管触发电路的调试

将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

(2)单相半波可控整流电路接电阻性负载

触发电路调试正常后,按图8-9电路图接线。将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压、晶闸管VT两端电压的波形,调节电位器RP1,观察30°、60°、90°、120°、150°时的波形,并测量直流输出电压和电源电压,记录于下表中。

计算值:

(3)单相半波可控整流电路接电阻电感性负载

将负载电阻R改成电阻电感性负载(由电阻器与平波电抗器Ld串联而成)。暂不接续流二极管VD1,在不同阻抗角(阻抗角 ),保持电感量不变,改变R的电阻值,注意电流不要超过1A情况下,观察并记录 30°、60°、90°、120°时的直流输出电压值的波形。

接入续流二极管VD1,重复上述实验,观察续流二极管的作用,以及波形的变化。

7.注意事项

(1)双踪示波器两个探头的地线端应接在电路的同电位点,以防通过两探头的地线造成被测量电路短路事故,示波器探头地线与外壳相连使用进应注意安全;

(2)在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通主电路。

8.实验报告要求

(1)画出90°时,电阻性负载和电阻电感性负载的波形;

(2)画出电阻性负载时的实验曲线,并与计算值的对应曲线相比较;

(3)分析实验中出现的现象,写出体会。

 

第二篇:实验一 锯齿波同步移相触发电路实验

     实验一  锯齿波同步移相触发电路实验

     晶闸管装置的正常工作与其触发电路的正确、可靠的运行密切相关,门极触发电路必须按主电路的要求来设计,为了能可靠触发晶闸管应满足以下几点要求:

(1)触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并保留足够的裕量。

(2)为了实现变流电路输出的电压连续可调,触发脉冲的相位应能在一定的范围内连续可调。

(3)触发脉冲与晶闸管主电路电源必须同步,两者频率应该相同,而且要有固定的相位关系,使每一周期都能在同样的相位上触发。

(4)触发脉冲的波形要符合一定的要求。多数晶闸管电路要求触发脉冲的前沿要陡,以实现精确的导通控制。对于电感性负载,由于电感的存在,其回路中的电流不能突变,所以要求其触发脉冲要有一定的宽度,以确保主回路的电流在没有上升到晶闸管擎住电流之前,其门极与阴极始终有触发脉冲存在,保证电路可靠工作。

DJK03-1挂件是晶闸管触发电路专用实验挂箱。其中有单结晶体管触发电路、正弦波同步移相触发电路、锯齿波同步移相触发电路I和II,单相交流调压触发电路以及西门子TCA785集成触发电路。

锯齿波同步移相触发电路III由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-12所示。

 

图1-11锯齿波同步移相触发电路I原理图

由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压UT来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压Uct和偏移电压Ub的大小。V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲。

本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180O,供单相整流及逆变实验用。

电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

一、实验目的

    (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

    (2)掌握锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件

三、实验线路及原理

锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。

四、实验内容

(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形的观察和分析。

五、预习要求

(1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、思考题

(1)锯齿波同步移相触发电路有哪些特点?

(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?

(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?

七、实验方法

(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。

②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。

③调节电位器RP1,观测“2”点锯齿波斜率的变化。

④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。

(2)调节触发脉冲的移相范围

将控制电压Uct调至零(将电位器RP2逆时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如图3-1所示。

 

图3-1锯齿波同步移相触发电路V

(3)调节Uct(即电位器RP2)使α=30°,α=60°观察并记录U1~U6及输出 “G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。

八、实验报告

(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。

(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?

(3)讨论、分析实验中出现的各种现象。

九、注意事项

双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

 
相关推荐