鸡西大学单结晶体管触发电路课程设计

单结晶体管触发电路课程设计

院系:电信系

班级:08机电4班

姓名:吕长明

 学号:04040804021

指导教师:王梦文

单结晶体管简介和应用

单结晶体管具有大的脉冲电流能力而且电路简单,因此在各种开关应用中,在构成定时电路或触发SCR等方面获得了广泛应用。它的开关特性具有很高的温度稳定性,基本上不随温度而变化。单结晶体管(简称UJT)又称基极二极管,它是一种只有一个PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。其结构、符号和等效电呼。

单结晶体管电路及原理

利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路。

V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

 

图11-1 单结晶体管触发电路原理图

工作原理简述如下:

由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、

V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一

个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路的各点波形如图所示。

电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

 


图11-2 单结晶体管触发电路各点的电压波形(α=90°)

单结晶体管的外形很象晶体三极管,它也有三个电极,称为发射极e,第一基极b1,第二基极b2,又叫双基极二极管。因为只有一个PN结所以又称为单结晶体管。外形及符号如图(a)、(b)所示。图中发射极箭头指向b1,表示经PN结的电流只流向b1极。单结管的等效电路如图(C)所示,rb1表示e与b1之间的等效电阻,它的阻值受e-b1间电压的控制,所以等效为可变电阻。两个基极之间的电阻用Rbb表示,即:Rbb=Rb1+Rb2,Rb1与Rbb的比值称为分压比h=Rb1/Rbb,h一般在0.3~0.8之间。

单结晶体管的主要参数

 (1)基极间电阻Rbb 发射极开路时,基极b1、b2之间的电阻,一般为2--10千欧,其数值随温度上升而增大。

 (2)分压比η 由管子内部结构决定的常数,一般为0.3--0.85。

 (3)eb1间反向电压Vcb1 b2开路,在额定反向电压Vcb2下,基极b1与发射极e之间的反向耐压。

 (4)反向电流Ieo b1开路,在额定反向电压Vcb2下,eb2间的反向电流。

 (5)发射极饱和压降Veo 在最大发射极额定电流时,eb1间的压降。

(6)峰点电流Ip 单结晶体管刚开始导通时,发射极电压为峰点电压时的发射极电流

单结晶体管具有大的脉冲电流能力而且电路简单,因此在各种开关应用中,在构成定时电路或触发SCR等方面获得了广泛应用。它的开关特性具有很高的温度稳定性,基本上不随温度而变化。

本电路为单结晶体管触发点路。

V1—V5,R1组成桥式整流削波电路,为后续电路提供与焦炉电压同时过零(同步)的梯形波电压。

V6,R2—R4及C组成单结晶体管震荡电路,由R4输出所需要的脉冲信号触发晶闸管。

R2,RP及C组成RC充电电路,当C两端的电压达到V6的峰值电压VP时,单结晶体管导通;C和E-B1间形成放电回路,在R4的上形成脉冲电压,当C两端的电压随着放电电压下降到谷点电压UV时,单结晶体管截至,R4上的电压为零,完成一次震荡。

所需挂件及附件

单结晶体管的工作原理和特性曲线

当b1—b2.间加电源VBB,且发射极开路时,A点电位及基极b2的电流为:

image:bk064925d-3.jpg

式中η称为单结晶体管的分压比,其数值主要与管子的结构有关,一般在0.5~0.9之间。

image:bk064925d-4.jpg           image:bk064925d-5.jpg

图3 单结晶体管特性曲线的测试

当e一b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电流Ie为二极管的反向电流,记作IEO。

当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A—b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关,注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而减小,表现出负阻特性。

负阻特性:是指输入电压增大到某一数值后,输入电流愈大,输入端的等效电阻愈小的特性。

一旦单结晶体管进入负阻工作区域,输入电流IE的增加只受输入回路外部电阻的限制,除非将输入回路开路或将IE减小到很小的数值,否则管子将始终保持导通状态。

单结晶体管的特性曲线

如图3,当 UEB1增大至UP(峰点电压)时,PN结开始正向导通,UP=UA+Uon;UEB1再增大一点,管子就进入负阻区,随着IE增大,rb1减小,UEB1减小,直至UEB1=Uv(谷点电压)。IE=IV谷点电流),IE再增大,管子进入饱和区。单结晶体管有三个工作区域

单结晶体管的负阻特性广泛应用于定时电路和振荡电路之中。除了单结晶体管外,具有负阻特性的器件还有隧道二极管、A双极型晶体管、负阻场效应管等。

 

第二篇:单结晶体管触发电路

   单结晶体管触发电路

一、实训目的

(1) 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2) 掌握单结晶体管触发电路的调试步骤与方法。

(3) 熟悉与掌握单结晶体管触发电路各主要点的波形测量与分析。

(4) 熟悉单结晶体管触发电路故障的分析与处理。

二、实训所需挂件及附件

三、实训线路及原理

利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图2-1所示。

图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

 

图11-1 单结晶体管触发电路原理图

工作原理简述如下:

由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一

个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路的各点波形如图2-2所示。

电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

 

图11-2 单结晶体管触发电路各点的电压波形(α=90°)

四、实训方法

(1) 单结晶体管触发电路的观测

用两根导线将PDX电源控制屏的220V交流电压接到PDC-13的“外接220V”端,按下“启动”按钮,打开PDC-13电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路经半波整流后“1”点的波形,经稳压管削波得到“3”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后用导线将“G”、“K”接到PDC-11上任一个晶闸管上,观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相?

(2) 单结晶体管触发电路各点波形的记录

当α=30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图2-2的各波形进行比较。

五、实训报告

(1) 画出α=60°时,单结晶体管触发电路各点输出的波形及其幅值。

(2) 对故障现象作出书面分析。

六、注意事项

(1) 实训时必须注意人身安全,杜绝触电事故发生。接线与拆线必须在断电的情况下进行。

(2) 实训时必须注意实训设备的安全,接线完成后必须进行检查,待接线正确之后方可进行实训。

(3) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

相关推荐