论述三相鼠笼式异步电动机的

论述三相鼠笼式异步电动机的

Y-△启动PLC控制

摘 要: 本文叙述了三相鼠笼式异步电动机Y-△启动PLC控制的原理。与传统继电器、接触器控制有哪些优、缺点。介绍了PLC的发展与应用。

主题词:三相鼠笼式异步电动机的Y-△启动PLC控制

1、引 言 三相鼠笼式异步电动机接入电网的瞬间,启动电流大约是额定电流的4~7倍。过大的启动电流会造成电网电压变化过大;对于启动时间较长的电动机,过大的启动电流对电动机会造成很大的损坏。所以除了小型异步电动机外,大多数异步电动机在启动运行时均须采用降压启动,以减小启动电流。常用的降压启动方法很多,下面就以Y-△降压启动控制的传统继电器及接触器控制启动的原理及新型PLC控制启动原理进行分析。

2、传统继电器及接触器控制Y-△启动

2.1  星形-三角形降压启动是指电动机启动时,把定子绕组接成星形(Y),以降低启动电压,限制启动电流;待电动机启动后,再把定子绕组改接成三角形(△),使电动机全压运行。只有正常运行时定子绕组作三角形(△)联接的异步电动机才可以采用这种降压启动方法。

2.2  电动机启动时接成星形,加在每相定子绕组上的启动电压只有三角形接法直接启动时的1/√3,启动电流为直接启动时的1/3,启动转矩也只有三角形直接启动时的1/3.所以这种降压启动方法,只适用于轻载或空载下启动。星形-三角形降压启动最大的优点是设备简单,价格低,因而获得广泛的应用。缺点是只适用正常运行时为三角形接法的电动机,降压比固定,有时不能满足启动要求。

2.3  星形-三角形(Y-△)降压启动控制线路

     

2.4  工作原理:启动时按下启动按钮SB2,交流接触器KM1工作并自保持,同时接触器KM3工作,电动机定子绕组作星形(Y)联接,电动机开始启动,时间继电器KT也同时工作,经延时KT常闭触点断开,交流接触器KM3停止工作、KT常开触点闭合,交流接触器KM2工作并自保持,KM2辅助常闭触点断开时间继电器KT停止工作,电动机定子绕组作三角形(△)联接全压运行。停止时按下停止按钮SB1,使KM1、KM2自保持回路断开,电动机停止工作。

2.5  电动机的保护:异步电动机在工作时如果出现不正常情况,必须及时切断电源,否则会缩短电动机的使用寿命,甚至会损坏电动机。对电动机危害较大的故障现象有短路、过载及缺相,这几种情况都会造成电机电流过大,绕组发热严重,造成温升过高,缩短电动机的使用寿命,甚至会烧坏电动机。对短路保护采取熔断器(FU)保护,对于过载及缺相采取热继电器(FR)保护,当电动机出现短路时熔断器(FU)熔断,当电动机出现过载及缺相时热继电器(FR)动作,从而切断主电路电源,避免电动机受到损伤。

3、电动机的Y-△启动PLC控制

3.1  PLC的相关知识:

1、PLC即可编程控制器(Programmable  logic  Controller),是指以计算机技术为基础的新型工业控制装置。它具有可靠性高、抗干扰能力强、配套齐全、功能完善、适用性强等特点。在1987年国际电工委员会(Intermational  Electrical  Committee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为工业环境下应用而设计的数字运算操作的电子装置。它才用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计”。

2、PLC发展到今天,已形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。PLC作为通用工业控制计算机,是面向工矿企业的工控设备,它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便的实现继电器电路的功能。PLC用存储逻辑代替接线逻辑,大大减少了控制设备的外部接线,使控制系统设计及建造的周期大为缩短,同时维护也变得简单容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。

3、PLC的用途很广,它具有开关量的逻辑控制、模拟量控制、运动控制、过程控制、数据处理、通信及联网等功能。开关量的逻辑控制是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,即可用于单台设备的控制,也可用于多机群控及自动化流水线。模拟量控制为在工业生产过程中,有许多连续变化的量,如温度、压力、流量、速度等都是模拟量。为了是可编程控制器处理模拟量,必须实现模拟量和数字量之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D转换及D/A转换模块,使可编程控制器用于模拟量控制。PLC还具有运动控制、过程控制、数据处理、通信及联网等功能。

4、世界上公认的第一台PLC是1969年美国数字设备公司(DEC)研制的。限于当时的元器件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。20世纪70年度初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。此时的PLC为微机技术和继电器常规控制概念相结合的产物。

5、20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。20世纪80年代初,可编程控制器在先进工业国家已获得广泛应用。这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。20世纪末期,可编程控制器的发展是更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国已可以生产一定的可编程控制器。

3.2  电动机的Y-△启动PLC控制主电路图:

3.3  电动机的Y-△启动PLC控制二次接线图:

3.4  电动机的Y-△启动PLC控制梯形图及I/O端口接线图:

3.5  本电动机的Y-△启动PLC控制I/O点数不多即;DI开入信号三个,X0.1停止信号,X1.1启动信号,X2.1电动机过载及缺相保护信号;DO开出信号三个,Y1.1启动接触器KM1,Y1.2全压启动接触器KM2,Y1.3降压启动(Y型连接)接触器KM3;T1:KM3延时断开的时间。

3.6  电动机的Y-△启动PLC控制原理为:

1、按下启动按钮SB2,X1.1得电、Y1.1线圈得电、K1线圈得电、KM1线圈得电。

2、Y1.1线圈得电同时Y1.3线圈得电、KM3线圈得电,开始星形启动,此时时间继电器T1开始延时。

3、当延时时间到时,T1常闭触点断开,Y1.3线圈失电、K3线圈失电、KM3线圈失电;T1常开触点闭合,Y1.2常闭触电闭合,Y1.2线圈得电自保持、K2线圈得电、KM2线圈得电电动机进入三角形(全压)运行状态。

4、停止时按下停止按钮SB1,X1.0断开,Y1.1线圈失电、Y1.3线圈失电电动机停止工作。

5、当电机过载或缺相时,热继电器FR动作,X2.1常闭触点断开,Y1.1线圈失电同时Y1.2、Y1.3线圈失电电机停止工作。

4、 结束语

通过对三相鼠笼式异步电动机Y-△启动传统方法与PLC控制相比较,从某种意义上看,PLC控制是从继电器接触器控制发展而来的,两者既有相似性又有很多不同处。

1、继电器、接触器控制全部采用硬器件、硬触点和 “硬”线连接,为全硬件控制;PLC内部大部分采用“软”电器、软接点和软线连接,为软件控制。

2、PLC内部全为软接点动作,继电器、接触器为机械式触点,动作慢,弧光放电严重。

3、继电器、接触器控制系统使用电器多,体积大且故障率大;PLC控制系统结构紧凑,使用电器少,体积小。

4、PLC控制功能改变极其方便,一般只需修改程序即可,继电器、接触器控制功能改变需拆线、接线乃至更换元器件,比较麻烦。

5、PLC控制系统由于结构简单紧凑、基本为软件控制,因此设计、施工与调试比继电器、接触器控制系统周期短。此外,由于PLC技术是计算机控制基础上发展而来,因此它的软硬件设置上有着传统继电器、接触器无法比拟的优势,工作可靠性极高。可以预期,随着我国工业现代化进程的深入,在我国PLC控制将会越来越普及,PLC

控制将有更广阔的应用天地。

 

第二篇:三相鼠笼式异步电动机正反转控制

电工部分

三相鼠笼式异步电动机正反转控制

一、  课程设计的目的及要求

   根据已有的电路图连接电路,在实验台上连接电路,最终实现让电动机转起来的要求:

1掌握三相鼠笼式异步电动机正反转控制电路的工作原理、接线及操作方法。

2掌握继电器控制系统中“互锁”、“自锁”的概念及线路结构。

3学会分析、排除继电器劫持控制线路故障的方法。

   4要求电动机可以正反转,由电动机原理可知,若将接至电动机的三相电源  

     进线中的任意两根相对调,即可使电动机正反转。

二、  设计原理

⑴电动机的旋转方向

  三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。

⑵电动机正反转控制原理

   ①控制线路

三相异步电动机接触器联锁的正反转控制的电气原理图如下图所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB1和反转按钮SB2控制。这两个接触器的主触头所接通的电源相序不同,KM1与KM2之间其中对调了两相的相序。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。

   ②互锁原理 

    接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。实现联锁作用的常闭触头称为联锁触头(或互锁触头)。

当按下正转启动按钮SB1后,电源相通过停止按钮SB的动断接点、正转启动按钮SB1的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1、热继电器FR的动断接点,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。

三、  设计内容与步骤

生产中有的机械需要人工点动控制电机,实现点动控制功能,只需将点动按钮串接在交流接触器的线圈中。即点动控制KM1交流接器,从而间接实现电动机的点动控制。如下图所示:接下SB1接钮KM1线图通电。KM1主触头闭合。三相异步电动机运转。当松开SB1接钮时,SB1触头断开。KM1线圈断开,电动机失电,电动机停止运转。

自锁控制是电气控制中常用的一种电路,如下图所示。启动时合上断路器,按下启动按钮SB2,接触器KM1线圈通电。其常开主触头闭合。电动机接通电源,开始启动。同时接触器KM1的辅助常开触点闭合。使接触器KM1线圈有两条通电路径。这样。当松开接钮SB2后,接触器KM1线圈仍能通过其辅助触点,使其线圈通电并保持吸合状态。这种依靠接触器本身辅助触点使其线圈保持通电的现象,称为自锁。起自锁作用的触点称为自锁触点。要使电动机停止运转,必须按下SB1,接触器KM1线圈电,则其主触头断开,切断电动机三相电源,电动机停车,同时接触器KM1自锁触点断开,控制回路解除自锁,松开停止按钮,控制由路又回到启动前的状态。

四、  设计结果

分别按下SB1   SB3  SB2进行正反向互换,SB3 为总的控制开关,起到暂停电路的功能。

异步电动机星角转换

一、 课程设计的目的及要求

1掌握三相鼠笼式异步电动机星角转换控制电路的工作原理、接线及操作方法。

2 了解星型接法和角型接法的工作原理。

3学会分析、排除继电器劫持控制线路故障的方法。

4 掌握数显时间继电器的工作原理。

二、设计原理

1 Y-△换接起动

对于正常运行时定子绕组为三角形连接并有六个出线端子的笼型异步电动机,为了减小起动电流,起动时定子绕组星形连接,降低定子电压,起动后再连接成三角形。这种方法成为Y-△起动。

2电动机星角接法转换,是根据电动机负载变化情况,用改变绕组接线方式来调整电压,使其与负载近似匹配,从而达到一定的节电效果。当电动机满载时,负载率大于40%,转换角形接法,全电压运行;电动机轻载时,负载率小于40%,转换星形接法,绕组在220V电压下运行。这种方法适用于电动机绕组角接,接线盒有6个接线柱,处于轻载运行或满载-轻载交替运行的电动机。角-星形接法转换只需对电动机一、二次接法略为改动,改法简单,可有效地避免大马拉小车的不经济运行方式。

三、 设计结果

按下SB1电动机开始转动,计时器从0开始计时,到达设定的时刻,停止计数,电动机继续转动,且转速加快。

四、结果分析及心得

这次电工课程设计让我了解到了关于同步电动机,异步电动机,三相异步电动机的工作原理。发现自己比较喜欢这些自己动手的实验,先听老师讲了一些生活中用到电动机的地方,又讲了电动机工作原理。接下来几天就是对电动机线路的接线。先看老师连了下第2个实验以后,自己根据线路图慢慢的接线,来后观察电动机的正转反转,以及通过SB1,SB2,SB3三个按钮来控制电动机的转动。在经过这次课程设计后,能把书本上所学的东西用到动手操作上。

五、  设计内容与步骤

起动时,KM1闭合,此时电机为星型连接。同时计时器开始计时。当计时器到达设定时间,KM1断开,同时KM3闭合,电机由星型起动转变为角型运行。

 KM1和KM3分别为星型接法和角型接法的接触开关,当其中一个接通时,电动机是以星型运行,时间继电器KT的线圈得电,时间继电器开始计时。当到达设定时间,电机转为角型运行。

电子部分

计数显示电路设计

一、课程设计的目的及要求

计数显示电路设计

设计一个计数显示电路并做出硬件,具体要求如下:

1、可以手动按钮完成计数

2、可以自动完成X进制定时计数(X = 学号 % 10 + 10)

3、有清零、启动、暂停和连续计数功能

4、学会简单的万用表、示波器使用,以及简单的调试

二、 设计原理

设计中采用NE555来产生一秒的脉冲信号。秒脉冲发生器产生的信号是电路的时钟脉冲和定时标准,555集成定时器是一种模拟和数字电路相混合的集成电路。它结构简单,使用灵活,用途广泛,可以组成多种波形发生器﹑多谐振荡器﹑定时延时电路﹑单稳触发电路﹑双稳态触发器﹑报警电路﹑检测电路﹑频率变换电路等。

为了给计数器74LS192提供一个时序脉冲信号,使其进行减计数,本设计采用555构成的多谐振荡电路(即脉冲产生电路),其基本电路如下图所示,由555工作特性和其输出周期计算公式可知,其产生的脉冲周期为:  T=0.7(R1+2R2)C

 因此,我们可以计算出各个参数通过计算确定了R1取15k欧姆,R2取68k欧姆。电容取C为10uF、C1为0.1uF,.这样我们得到了比较稳定的脉冲,且其输出周期近似为1秒.

计数器选用中规模集成电路74lsl92进行设计较为简便,CD40l92是十进制可编程同步加/减计数器,它采用8421码二—十进制编码,并具有直接清零、置数、加/减计数功能。下图分别是74lsl92的管脚排列图和时序波形图。图中CPU、CPD分别是加计数、减计数的时钟脉冲输入端(上升沿有效)。是异步并行置数控制端,(低电平有效),分别是进位、借位输出端(低电平有效),CR是异步清除端,是并行数据输入端,是输出端。

74lsl92的功能表如表所示,74lSl92的工作原理是:当=l,CR=0时,若时钟脉冲加入到CPU端,且CPD=1,则计数器在预置数的基础上完成加计数跳变脉冲;当加计数到9时,端发出进位下跳变脉冲。若时钟脉冲加入到CPD端,且CPU=1,则计数器在预置数的基础上完成减计数功能,当减计数到0时, 端发出借位下跳变脉冲。

由74lSl92构成的十四进制递减计数器如图所示,其预置数为N=(1110) =(14)l0。它的计数原理是:只有当低位端发出借位脉冲时,高位计数器才作减计数。当高、低位计数器处于全零,且CPD为0时,置数端=0,计数器完成并行置数,在CPD端的输入时钟脉冲作用下,计数器再次进入下一循环减计数。

1.七段共阴数码显示管            2.码驱动器(74LS48)

  

                               

                     

4. 74ls192                         5.74ls48BCD-七段译码器/驱动器引脚

                                     图

    

6.74ls10三输入与非门引脚图           7.74LS10引脚图及功能图:

    

7.555定时器引脚图

   

三、 设计内容与步骤

由时钟脉冲产生电路产生标准1HZ计时信号,用预置初始值的递减计数器对1HZ的时钟信号进行计数,每1s计数器减1,显示器上显示剩余的时间,每当减到0时,定时时间到,报警电路工作,输出报警信号。对于定时器的启动、暂停/连续计时功能可以控制电路来完成。

计数器进行加计数时,其计数脉冲从CPu输入;进行减计数时,计数脉冲从CPd输入。另外是异步清除端(高电平有效),D3~D0是并行数据输入端,LD是异步并行置数控制端(低电平有效),是加计数进位输出端,当加计数到最大计数值时,发出一个低电平信号(平时为高电平);为减计数结尾输出端,当减计数到零时,发出一个低电平信号(平时为高电平),负脉冲宽度等于时钟脉冲低电平宽度。

四、 设计结果

先按照总图将元器件焊接到电路板上,然后进行调试,要求实现下列功能:

A、定时器的定时时间大概为14秒,按递减方式计时,每隔大概1s,定时器减1;能以数字形式显示时间。

B、设置一个外部控制开关,控制定时器的复位。再设计两个开关使得可以连续/暂停计时。

C、当定时器递减时到零(即定时时间到)时,定时器保持时间不变,使发光二极管发光(频率1kHz)。

在通电了之后,电路板可以实现倒计时,然后按开关可以使得它暂停/暂停,倒计时减到0之后二极管亮,然后可以用开关控制复位,复位之后电路板依旧可以从14递减到0,直至二极管亮。

五、 电路图

六、 结果分析及心得

1.本次课程设计,我对74LS48、74LS192、555等芯片加深了认识,也巩固了对它们的使用。对于数字、模拟电路的综合运用则是有了更深一步理解,我想这次课程设计一定会为我以后的电路分析和设计打下坚实的基础。这次试验过程中提高了实践动手操作能力。在大学中,我们许多的时间都是在学习理论知识,很少参与实践操作,对于电子技术的学习更是这样。这次课程设计给我提供了一个很好的机会,将我们学到的知识用于实践,从元件芯片的了解,电路设计,模拟仿真,安装调试,每一步的进行,都给我带来受益非浅的感悟,学到了许多我们在课本上学不到的实践经验,对此,我真的很开心很有成功感。

相关推荐