实验7 迈克尔逊干涉仪的调整与使用

实验迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪是一种分振幅的双光束干涉测量仪器,是美国科学家迈克尔逊(A.A.Michelson)于1881年设计制造的一种精密干涉测量仪器,可用于测量光波波长、折射率、物体的厚度及微小长度变化等,其精度可与光的波长比拟。

迈克尔逊干涉仪在历史发展史上起了很大的作用,迈克尔逊及其合作者曾用此仪器做了“以太漂移”实验、用光波波长标定米尺长度、推断光谱精细结构三项著名实验,第一项实验解决了当时关于 “以太”的争论,为爱因斯坦建立狭义相对论奠定了基础,第二项实现了长度单位的标准化(用镉红光作为光源标定标准米尺长度,建立了以光波为基准的绝对长度标准),第三项工作研究了光源干涉条纹可见度随光程差变化的规律,并以此推断光谱。迈克尔逊和莫雷因在这方面的杰出成就获得了1907年诺贝尔物理学奖。

迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性,根据迈克尔逊干涉仪基本原理发展的精密干涉测量仪器已经广泛应用于生产和科研领域。因此,了解它的基本结构,掌握其使用方法很有必要。

实验目的

1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法。

2、学会观察非定域干涉、等倾干涉、等厚干涉及白光干涉条纹。

3、学会用迈克尔逊干涉仪测量激光波长及钠光双线波长差。

实验原理

1、迈克尔逊干涉仪的结构及工作原理

迈干仪由分光镜、补偿板、两反射镜和观察屏组成,分光镜的后表面镀有半透半反射膜,将入射光分成两束,一束透射光1,一束反射光2,这两束光分别被反射后,经半透半反射膜的反射和透射在观察屏上相遇,由于这两束光是相干光,在屏上干涉产生干涉条纹,其光路如上图所示。被分光镜反射所成的像,光束1和光束2之间的干涉等效于之间空气膜产生的干涉。补偿板是一个与分光镜平行放置且材料、厚度完全相同的玻璃板,其作用是补偿两束光使得两束光在玻璃中的光程相等。由于玻璃的色散,不同波长的光在干涉仪中具有不同的光程差,无法观测白光干涉条纹,在分光镜和反射镜之间加入补偿板,这两束光在相同的玻璃中都穿过三次,不同波长的光在干涉仪中具有相同的光程差,这对观察白光干涉很有必要。反射镜分别装在相互垂直的两个臂上,反射镜位置固定(称为定镜),位置固定在滑块上,可通过转动粗调手轮、微调手轮沿臂长方向移动(称为动镜),在该方向上附有主尺,其位置可通过主尺、粗调手轮上方读数窗口及微调手轮示数读出,其读数原理与千分尺读数原理相同。粗调手轮转动一周,动镜沿臂长方向上移动1mm,手轮上刻有100个刻度,因此粗调手轮每转动一个小刻度相当于动镜沿臂长方向移动0.01mm,微调手轮转动一周,相当于粗调手轮转动一个小刻度,手轮上也刻有100个刻度,因此微调手轮转动一个小刻度,相当于动镜移动了0.0001mm,加上一位估读位,可读到0.00001mm位。反射镜的方位可通过其后面的三个螺钉来调节,在反射镜的下方还有两个互相垂直的拉簧螺丝用以微调的方位。

2、点光源产生的非定域干涉条纹及激光波长的测量

激光经短透镜会聚后成为一点光源,水平入射到分光板上,经M1、M2反射后产生的干涉现象等效于两个虚光源S1、S2发出的光产生的干涉,如图所示。S1、S2分别是点光源经G被M1、M2反射所成的像,虚光源S1、S2发出的光由于是同一束光分出的两束光,具有相干性,在其相遇的空间处处相干,因此是非定域干涉。用观察屏观察干涉条纹时,在不同的位置可以观察到不同的干涉条纹(如圆、椭圆、双曲线、直线),在迈克尔逊干涉仪的实际情况下,放置屏的空间是有限的,一般能观察到圆和椭圆形状。当把观察屏放在垂直于S1、S2的连线上时,观察到的条纹是一组同心圆。

由S1、S2到达观察屏上任一点P两束光的光程差为。当时,有

                                      (1)

出现亮条纹的位置为

                                              (2)

由上式可知:

①         rk越小,k越大,即靠近中心的干涉条纹干涉级次高,靠近边缘的干涉条纹干涉级次低。

②改变动镜的位置,两束光的光程差发生变化,因此干涉条纹也发生变化。当M1、M2之间的距离d增大时,对于同一级干涉,rk也增大,条纹向外扩展,圆心处有条纹“涌出”,当其间的距离减小时,条纹向中心“涌入”,中心条纹消失。涌入或涌出一条干涉条纹动镜位置的变化为,设涌入或涌出N个干涉圆环动镜位置的变化为,则有

                                                              (3)

由上式可知:改变动镜的位置,测出涌入或涌出N个干涉圆环对应动镜位置的变化,就可以算出激光的波长。

③相邻两条干涉条纹之间的距离为

                                           (4)

越靠近中心(rk越小),越大,即干涉条纹中间稀边缘密

d越小,越大,即减小M1、M2之间的距离,条纹变疏,增大M1、M2之间的距离,条纹变密

Z越大,越大,即点光源、观察屏距分光镜越远,条纹越疏

3、扩展光源产生的等倾干涉条纹

用扩展光源照射,当M1、M2平行时,被M1、M2反射的两束光互相平行,若用透镜接收这两束光,则这两束光在透镜的焦平面上相遇发生干涉,如图所示

              

两束光光程差为

                                                        (5)

出现亮条纹的位置为

                                                             (6)

由上可知:

①  在d一定时,倾角相同的入射光束,对应同一级干涉条纹,因此称为等倾干涉,倾角相同的光在透镜的焦平面上对应同一干涉圆环,因此其干涉条纹为一组同心圆。用聚焦于无穷远的眼睛直接观察或放置一会聚透镜,在其后焦平面上用观察屏可观察到等倾干涉条纹,

②  中心干涉圆环干涉级次高,当d增加时,条纹从中心涌出向外扩展,d减小时,条纹向中心涌入,每涌出或涌入一条干涉条纹d增加或减小了

③  相邻两条干涉圆环之间的距离为:

                                                            (7)

越靠近中心的干涉圆环,越大,条纹越疏,即干涉条纹中间疏边缘密

d越小,越大,即条纹随着d的变化而变化,当d增大时,条纹变疏,当d减小时,条纹变疏

4、扩展光源产生的等厚干涉条纹

用扩展光源照射,当M1、M2之间有一小的夹角时,被M1、M2反射的两束光在镜面附近相遇发生干涉,如图所示。

             

在入射角不大的情况下,其光程差为:

                                                 (8)

出现亮条纹位置为

                                                 (9)

在两镜面交线附近,可以忽略,光程差主要决定空气膜的厚度,厚度相同的地方对应同一级干涉条纹,因此称为等厚干涉,其干涉条纹为平行于两镜面交线的等间隔的直条纹。远离两镜面交线处,不能忽略,其干涉条纹发生弯曲,并凸向两镜面交线的方向。

用眼睛向镜面附近观察就可以观察到等厚干涉条纹。

5、条纹视见度及钠光双线波长差的测量

通常用视见度来描述干涉条纹的清晰程度,其定义为

                                                (10)

式中分别为明、暗条纹的光强。时视见度最大,条纹最清楚,时视见度最小,条纹最模糊。

用钠光灯作光源,由于钠光含有波长非常相近的两条谱线,每组谱线都各自产生一套干涉条纹,改变动镜的位置,这两套干涉条纹交叉重叠,条纹的视见度随之发生周期性变化,当

                                            (11)

时,条纹视见度为零,设相邻两次视见度为零时M1移动的距离为,则钠光两条谱线的波长差为:

                                               (12)

由上式可知:测出相邻两次视见度为零时M1移动的距离,可求出钠光双线的波长差。

实验仪器

迈克尔逊干涉仪、He-Ne激光器、钠光灯、小孔光阑、扩束镜、白炽灯

实验内容与步骤

1、迈克尔逊干涉仪的基本调节

移动M1使M1、M2距分光镜G的距离大致相等。调节He-Ne激光器水平并垂直导轨方向入射到分光镜的中央部位,然后在激光器和分光镜之间放一小孔光阑,使光通过小孔照射到分光镜上,被M1、M2反射在小孔光阑上各有一排亮点,调节M2后的三个方位螺钉,使得被M2反射的一排亮点中的最亮点与小孔重合,再调节M1后的三个方位螺钉,使得被M1反射的一排亮点中的最亮点与小孔重合,这时M1、M2基本互相平行,光照射到迈克尔逊干涉仪就可以观察到干涉条纹。

2、用激光作光源,调出非定域干涉圆条纹,观察条纹特征,改变动镜的位置,观察条纹的变化。

移去小孔光阑,放上扩束镜,使光均匀照亮分光镜,这时在观察屏上就可以观察到干涉条纹,再调节M2的两个微动拉簧螺丝,就可以观察到非定域干涉圆条纹。改变动镜位置,观察条纹的变化。

3、调出等倾干涉条纹,观察干涉条纹特征,改变动镜位置,观察条纹的变化。并连续记录12次干涉条纹变化100条对应的d值,用逐差法求,计算激光的波长及其不确定度,正确表示测量结果。

在观察到非定域干涉圆条纹的基础上,扩束镜和分光镜之间置一毛玻璃屏,使入射光成为扩展光源入射到迈克尔逊干涉仪上,用聚焦到无穷远的眼睛代替观察屏,即可看到圆条纹。进一步调节M2的微动拉簧螺丝,使眼睛上下左右移动时,干涉圆环没有“涌入”或“涌出”现象,而仅仅是圆心随眼睛的移动而移动,这时我们看到的就是等倾干涉条纹。

改变动镜的位置,观察条纹的变化规律,记录并分析观察结果。转动微调手轮,使动镜位置缓慢变化,记录干涉圆环“涌入”或“涌出”100条干涉圆环对应动镜的位置,用逐差法计算“涌入”或“涌出”100条干涉圆环动镜位置的变化,求激光的波长及不确定度,正确表示测量结果。(注意:消除空程差)

4、用钠光作光源,调出等厚干涉条纹,观察条纹特征,改变动镜位置,观察条纹视见度的变化,并连续记录6次视见度为零时的d值,用逐差法求,计算钠光双线波长差。(选做内容)

改变动镜的位置,在干涉条纹变粗变疏时,用钠光灯作光源直接照射在分光镜上,调节M2微动拉簧螺丝使M1、M2之间有一很小夹角,即可在观察屏上观察到等厚干涉条纹。改变动镜的位置,观察条纹的变化,记录并分析观察结果。

调节粗调手轮和微调手轮,改变动镜的位置,观察条纹视见度的变化,记录条纹视见度为零时动镜的位置d,用逐差法计算相邻两次视见度为零时动镜位置的变化,求钠光双线波长差。

5、用白光作光源,观察白光干涉条纹。(选做内容)

改变动镜位置,在钠光等厚干涉条纹变成直线时,用白炽灯直接照射在分光镜上,非常缓慢移动M1,即可观测到白光彩色条纹。注意:由于白光干涉条纹数很少,所以必须耐心细致调节才能观测到,如果M1移动太快,干涉条纹会一晃而过不易找到。

数据记录表格

1、  测激光的波长

                                                             N=600条

2、测钠光双线波长差(选做内容)

                                

注意事项

1、    干涉仪中的全反射镜、分光镜、补偿板均为精密光学元件,调节过程中严禁手摸所有光学表面,同时调反射镜时螺钉及拉簧螺丝松紧要适度。

2、  测量时注意消除空程差。

3、  不要用眼直视未扩束的激光。

思考题

1、迈克尔逊干涉仪观察到的圆条纹与牛顿环产生的圆条纹有什么不同?

2、什么情况下可以观测到非定域干涉中椭圆、双曲线、直线条纹?

 

第二篇:迈克尔逊干涉仪的调整与应用实验要点

  

(1)实验前请认真阅读“实验须知”、“实验内容”及本要点:

测波长的同学需每冒出(或缩进)50环,读一次镜的位置,至少连续测8组,将数据填入表格,并观察其实验现象。

测线膨胀系数的同学可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。

注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。

(2)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件)让老师检查数据是否合格。

(3)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);

(4)在预习报告后根据实际实验加上实验内容、实验步骤;

(5)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;

(6)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。

(7)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案(可以回去再做)。

(8)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。

(9)完成相应实验后,请收拾好仪器,整理好桌面,关好计算机才能离开实验室。

附录1 数据记录要求

注:要求使用空白实验报告纸记录实验数据,不能使用铅笔,不能有涂改。

附录2 数据处理要求

1、    处理时需重列表格,用逐差法处理数据,要求有关键步骤;

2、    处理结果与标准(或参考值)比较并作分析,正确表示实结果,并进行实验小结、讨论;

3、    (不作硬性要求,但要了解)求出结果的不确定度,逐差法的不确定度求解可参考《逐差法处理实验数据》部份。

附录3 逐差法处理实验数据

  当实验中两物理量满足正比关系时,依次记录改变相同的量时的值:x1,x2xn(或者当某一研究对象随实验条件周期性变化时,依次记录研究对象达到某一条件(如峰值、固定相位等)时的x1,x2xn:),的间隔周期的求解方法若由x1,x2xn逐项逐差再求平均:
           
其中只利用了,难以发挥多次测量取平均以减小随机误差的作用,此时应采用隔项逐差法(简称逐差法)处理数据。

  逐差法处理数据时,先把数据分为两组,然后第二组的与第一组相应的 相减,如下表:


逐差法处理数据举例:

  外加砝码下,弹簧伸长到的位置记录如下表,可用逐差法求得每加一个1kg的砝码时弹簧的平均伸长量(满足前提条件:弹簧在弹性范围内伸长,伸长量与外加力成正比),也可求得弹簧的倔强系数。已知测量时,估算(见下表)。

  逐差法提高了实验数据的利用率,减小了随机误差的影响,另外也可减小中仪器误差分量,因此是一种常用的数据处理方法。

  有时为了适当加大逐差结果为个周期,但并不需要逐差出个数据,可以连续测量  n个数据后,空出若干数据不记录,到时,再连续记录  n个数据,对所得两组数据进行逐差可得:

,不确定度可简化由:来估算。

  严格地讲以上介绍的一次逐差法理论上适用于一次多项式的系数求解,要求自变量等间隔地变化。有时在物理实验中可能会遇到用二次逐差法、三次逐差法求解二次多项式、三次多项式的系数等,可参考有关书籍作进一步的了解。

相关推荐