实验8 IIR数字滤波器设计综合实验(预习报告)

实验8  IIR数字滤波器设计综合实验

1.实验程序及运行结果

    信号产生函数:mstg.m

function st=mstg

%产生信号序列向量st,并显示st的时域波形和频谱

%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600

N=1600;   %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间

t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;

fc1=Fs/10;  %第1路调幅信号的载波频率fc1=1000Hz,

fm1=fc1/10;    %第1路调幅信号的调制信号频率fm1=100Hz

fc2=Fs/20;   %第2路调幅信号的载波频率fc2=500Hz

fm2=fc2/10;    %第2路调幅信号的调制信号频率fm2=50Hz

fc3=Fs/40;  %第3路调幅信号的载波频率fc3=250Hz,

fm3=fc3/10;    %第3路调幅信号的调制信号频率fm3=25Hz

xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号

xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号

xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号

st=xt1+xt2+xt3;         %三路调幅信号相加

fxt=fft(st,N);          %计算信号st的频谱

%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================

subplot(2,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')

subplot(2,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')

axis([0,Fs/5,0,1.2]);

xlabel('f/Hz');ylabel('幅度')

    函数说明:

    (1)该函数生成的三路时域信号分别为

    (2)合成信号为

(3)采样频率为,采样点数为点,采样时间

(4)抑制载波单频调幅信号的数学表示式为

    源程序:shzxhchlshiyan4_1

%shzxhchlshiyan4_1

% IIR数字滤波器设计及软件实现

clear all,close all,clc,clf;

Fs=10000;T=1/Fs;   %采样频率

%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st

st=mstg;

%低通滤波器设计与实现===========================================

fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %椭圆低通滤波器技术指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆低通滤波器阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp);  %调用ellip计算椭圆低通滤波器系统函数系数向量B和A

y1t=filter(B,A,st);      %求低通滤波器的零状态响应

[H,w]=freqz(B,A);   %求低通滤波器的频响特性

% 绘制椭圆低通滤波器衰减特性曲线

figure(2);

mag=abs(H);

db=20*log10((mag+eps)/max(mag)); %eps浮点数的相对误差

subplot(2,1,1);plot(w/pi,db);%绘制损耗函数曲线

axis([0,1,-100,5]);grid on;

title('低通滤波损耗函数曲线');xlabel('\omega/\pi ');ylabel('幅度(dB)');

set(gca,'Xtick',[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]);

set(gca,'Ytick',[-100,-80,-60,-40,-20,0]);

% 绘制225-275Hz范围内时域信号波形

N=1600;t=0:T:(N-1)*T;

subplot(2,1,2);plot(t,y1t);

title('低通滤波分离225-275Hz范围内时域信号波形');

xlabel('t/s');ylabel('y_1(t)');axis([0,0.16,-1.1,1.1]);

%带通滤波器设计与实现===========================================

fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs);

[B,A]=ellip(N,rp,rs,wp);

y2t=filter(B,A,st);    %求帯通滤波器的零状态响应

[H,w]=freqz(B,A);     %求帯通滤波器的频响特性

% 绘制椭圆低通滤波器衰减特性曲线

figure(3);

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

subplot(2,1,1);plot(w/pi,db);

axis([0,1,-100,5]);grid on;

title('带通滤波损耗函数曲线');xlabel('\omega/\pi ');ylabel('幅度(dB)');

set(gca,'Xtick',[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]);

set(gca,'Ytick',[-100,-80,-60,-40,-20,0]);

% 绘制450-550Hz范围内时域信号波形

N=1600;t=0:T:(N-1)*T;

subplot(2,1,2);plot(t,y2t);

title('带通滤波分离450-550Hz范围内时域信号波形');

xlabel('t/s');ylabel('y_2(t)');axis([0,0.16,-1.1,1.1]);

%高通滤波器设计与实现================================================

fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; 

[N,wp]=ellipord(wp,ws,rp,rs);

[B,A]=ellip(N,rp,rs,wp,'high');

y3t=filter(B,A,st);  

[H,w]=freqz(B,A);    

% 绘制椭圆高通滤波器衰减特性曲线

figure(4);

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

subplot(2,1,1);plot(w/pi,db);

axis([0,1,-100,5]);grid on;

title('高通滤波损耗函数曲线');xlabel('\omega/\pi');ylabel('幅度(dB)');

set(gca,'Xtick',[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]);

set(gca,'Ytick',[-100,-80,-60,-40,-20,0]);

% 绘制900Hz以上时域信号波形

N=1600;t=0:T:(N-1)*T;

subplot(2,1,2);plot(t,y3t);

xlabel('t/s');ylabel('y_3(t)');axis([0,0.16,-1.1,1.1]);

title('高通滤波分离900-1100Hz范围内时域信号波形');

    程序运行结果:

图4-1  三路调幅信号st的时域波形和幅频特性曲线

图4-2  椭圆低通滤波器的幅频特性曲线和输出时域波形

图4-3  椭圆带通滤波器的幅频特性曲线和输出时域波形

图4-4  椭圆高通滤波器的幅频特性曲线和输出时域波形

    程序运行结果分析:

由图4-2~图4-4可见:三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号的波形是抑制载波的单频调幅波。

2.思考题简答

(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

答:第一路调幅信号的载波频率为,调制信号频率为

第二路调幅信号的载波频率为,调制信号频率为

第三路调幅信号的载波频率为,调制信号频率为

(2)信号产生函数mstg中采样点数N=1600,对st进行N点FFT可以得到6根理想谱线。如果取N=1800,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

答:因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。

分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

答:AM信号表示式

按上式修改程序,观察运行结果。

 

第二篇:实验四IIR数字滤波器设计及软件实现实验报告

实验四IIR数字滤波器设计及软件实现实验报告

一、实验目的 

(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容及步骤

(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1  三路调幅信号st的时域波形和幅频特性曲线

(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。

提示:抑制载波单频调幅信号的数学表示式为

其中,称为载波,fc为载波频率,称为单频调制信号,f0为调制正弦波信号频率,且满足。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频和差频,这2个频率成分关于载波频率fc对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。如果调制信号m(t)具有带限连续频谱,无直流成分,则就是一般的抑制载波调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则就是一般的双边带调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),并包含载频成分。

(3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

(4)调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。

四、信号产生函数mstg清单

function st=mstg

%产生信号序列向量st,并显示st的时域波形和频谱

%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600

N=1600   %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间

t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;

fc1=Fs/10;      %第1路调幅信号的载波频率fc1=1000Hz,

fm1=fc1/10;     %第1路调幅信号的调制信号频率fm1=100Hz

fc2=Fs/20;     %第2路调幅信号的载波频率fc2=500Hz

fm2=fc2/10;     %第2路调幅信号的调制信号频率fm2=50Hz

fc3=Fs/40;      %第3路调幅信号的载波频率fc3=250Hz,

fm3=fc3/10;     %第3路调幅信号的调制信号频率fm3=25Hz

xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号

xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号

xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号

st=xt1+xt2+xt3;         %三路调幅信号相加

fxt=fft(st,N);          %计算信号st的频谱

%====以下为绘图部分,绘制st的时域波形和幅频特性曲线=

subplot(3,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')

subplot(3,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')

axis([0,Fs/5,0,1.2]);

xlabel('f/Hz');ylabel('幅度')

五、实验程序框图如图10.4.2所示

六、滤波器参数及实验程序清单

1、滤波器参数选取

观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。带宽(也可以由信号产生函数mstg清单看出)分别为50Hz、100Hz、200Hz。所以,分离混合信号st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:

对载波频率为250Hz的条幅信号,可以用低通滤波器分离,其指标为

带截止频率Hz,通带最大衰减dB;

阻带截止频率Hz,阻带最小衰减dB,

对载波频率为500Hz的条幅信号,可以用带通滤波器分离,其指标为

带截止频率Hz,Hz,通带最大衰减dB;

阻带截止频率Hz,Hz,Hz,阻带最小衰减dB,

对载波频率为1000Hz的条幅信号,可以用高通滤波器分离,其指标为

带截止频率Hz,通带最大衰减dB;

阻带截止频率Hz,阻带最小衰减dB,

说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。

(2)与信号产生函数mstg相同,采样频率Fs=10kHz。

(3)为了滤波器阶数最低,选用椭圆滤波器。

按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。

2实验程序清单

%实验4程序

% IIR数字滤波器设计及软件实现

clear all;close all

Fs=10000;T=1/Fs;   %采样频率

%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st

st=mstg;

%低通滤波器设计与实现

fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;   %DF指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp);      %调用ellip计算椭圆带通DF系统函数系数向量B和A

y1t=filter(B,A,st);     %滤波器软件实现

% 低通滤波器设计与实现绘图部分

figure(2);subplot(3,1,1);

myplot(B,A);  %调用绘图函数myplot绘制损耗函数曲线

yt='y_1(t)';

subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形

%带通滤波器设计与实现

fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs);    %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A

y2t=filter(B,A,st);     %滤波器软件实现

% 带通滤波器设计与实现绘图部分(省略)

%高通滤波器设计与实现

fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;   %DF指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs);    %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A

y3t=filter(B,A,st);     %滤波器软件实现

% 高低通滤波器设计与实现绘图部分(省略)

七、实验程序运行结果

实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。

(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)

(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)

(c)高通滤波器损耗函数及其分离出的调幅信号y3(t)

 图104. 实验4程序exp4.m运行结果

八、思考题简答

(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

答:分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线

相关推荐