简单机械和功知识归纳

简单机械和功知识点归纳

第一部分、杠杆和滑轮 一、杠杆

1、杠杆的定义:一根在力的作用下能绕着固定点转动的硬棒就是杠杆。杠杆可以是直的硬棒,如撬棒等;也可以是弯的,如压井的把儿。 2、杠杆的五要素:

支点O:杠杆绕着转动的点。 动力F1: 使杠杆转动的力。 阻力F2:阻碍杠杆转动的力。

动力臂L1:从支点到动力作用线的距离。 阻力臂L2:从支点到阻力作用线的距离。

3、杠杆平衡:杠杆在力的作用下保持静止或匀速转动,杠杆就处于平衡状态。 杠杆的平衡条件是:

动力×动力臂=阻力×阻力臂: F1L1= F2L2

注意:杠杆的平衡不是单独由力或力臂决定的,而是由它们的乘积来决定的。 能用杠杆的平衡条件解释、设计、解决有关问题,能进行简单计算。 4、杠杆分类:

(1)省力杠杆:L1>L2,F1<F2。

其动力臂L1大于阻力臂L2,平衡时动力F1小于阻力F2,即用较小的动力就可以克服较大的阻力。但是实际工作是动力移动的距离却比阻力移动的距离大,即要费距离。如撬起重物的撬棒,开启瓶盖的起子、铡草用的铡刀等,都属于这一类杠杆。 (2)费力杠杆:L1<L2,F1>F2。

这类杠杆的特点是动力臂L1小于阻力臂L2,平衡时动力F1大于阻力F2,即要用较大的动力才能克服阻力完成工作,但它的优点是杠杆工作时,动力移动较小的距离就能使阻力移动较大的距离。使工作方便,也就是省了距离。如缝纫机踏板、挖土的铁锨、大扫帚、夹煤块的火钳,这些杠杆都是费力杠杆。

(3)等臂杠杆:L1=L2,F1=F2。

这类杠杆的动力臂L1等于阻力臂L2,平衡时动力F1等于阻力F2,工作时既不省力也不费力,如天平、定滑轮就是等臂杠杆。

注意:二、定滑轮、动滑轮、滑轮组

5、定滑轮定义:轴固定不动的滑轮叫做定滑轮。特点:使用定滑轮不省力,但可以改变力的方向。

6、动滑轮定义:轴和物体一起移动的滑轮叫做动滑轮。特点:使用动滑轮可以省一半力,但不改变力的方向,且多移动一倍的距离。

7、滑轮组:由定滑轮和动滑轮组合而成的。特点:使用滑轮组会省力,可能会改变用力方

向,一定费距离。

8、使用滑轮组时,重物和动滑轮由几段绳子承担,作用在绳子末端的拉力就是重物和动滑轮总重的几分之一,若动滑轮重不计,则F=G/n。 注意:

(1)要严格区别“用力”和“省力”,用力F=G物/n;省力F′=(1-1/n)G物。

(2)数绳子段数可以用“隔离法”:假想把定滑轮和动滑轮从中间隔断,再看隔离后,留在动滑轮及货物上相关线头有几个,就是几段绳子,如图所示,n=4。

9、知道斜面也是一种简单机械。其特点是:高度一定时,斜面越长越省力。例如盘山路。 规律方法指导

1.正确理解力臂的概念

力臂是指从支点到力的作用线的距离,力对杠杆的转动效果不仅与力的大小有关,还与支点到作用线的垂直距离有关,支点到动力作用线的距离叫动力臂,支点到阻力作用线的距离叫阻力臂。力的大小相同时,力臂是影响杠杆转动的物理量。

如图甲所示,若分别在杠杆的A点和B点作用竖直向上的力F1和F2,使杠杆缓缓绕O点转动,当然力F2较小,因为F2的力臂较大。

如图乙中,若先后在杠杆同一点A作用垂直于杠杆的力F1和斜向下的力F2,使杠杆缓缓绕O转动,我们发现力F1较小,原因同样在于F1的力臂较大。

应用中必须留心力臂的画法。千万不要把支点到力作用点的连线误认为是力臂。

图乙中我们还可以看到,若作用点不变,力的方向发生改变,那么力臂也会随着改变,F1的力臂是l1,F2的力臂是l2,而且力臂不一定在杠杆上(如l2)。 2.正确理解杠杆平衡表示什么意思及平衡条件是什么

当有两个力或几个力作用在杠杆上,能使杠杆分别按两个不同方向转动(常用顺时针或逆时针来区别),若杠杆保持静止不动或匀速转动时,则我们说杠杆平衡了.根据实验可得出杠杆平衡的条件是

,即动力与动力臂的乘积等于阻力与阻力臂的乘积。

应该注意所谓动力与阻力并无严格区别,比如天平测量物体质量时,被测物对底盘的压力与砝码对底盘的压力根本无需分清哪个是动力,哪个是阻力,在这里区分动力与阻力目的在于区别使杠杆转动的方向不同而已。

3.怎样判断滑轮组的用力情况

使用滑轮组提重物时,若忽略滑轮和轴之间的摩擦以及绳重,则重物和动滑轮由几段绳子承

担,提起重物的力就等于总重量的几分之一,即清几段绳子承担动滑轮和重物的总重。

。因此判断用力情况的关键是弄

用“连动法”,弄清直接与动滑轮连接的绳子的根数n,在图甲中我们以重物和动滑轮为研究对象,n=4,有四根绳子承担动滑轮及重物,所以用力

。同理,分析乙图可知,提起重

物及动滑轮的力。

从上面还可以看出,同一个滑轮组,绳子的绕法不同,省力的情况也不同,绳端固定在动滑轮上比固定在定滑轮上更省力。 第二部分、功和功率 1、理解功的知识 要点诠释:

知道功是力和在力的方向上移动的距离的乘积;功的公式是W=FS,单位是J。

注意:由功的定义和功的公式可知做功要满足的二要素是:作用在物体上的力;在力的方向上通过的距 离。能根据功的知识解释是否做功、用W=FS进行简单计算。 2、功的原理:使用任何机械都不省功。 3、理解功率的概念 要点诠释:

知道单位时间做的功叫功率;它是表示做功快慢的物理量。其定义式为P=W/t, 国际单位为瓦特,简称瓦(W),常用单位为千瓦(KW),换算关系为1KW=1000W。 注意:功率是表示做功快慢而不是表示做功多少的物理量。 规律方法指导

如何判断物体的做功情况 1.理解判断的依据

依据:做功的两个必要因素;

重点:抓住力作用在物体上是否有“成效”。 2.明白不做功的三种情况

A.物体受力,但物体没有在力的方向上通过距离,此情况叫“劳而无功”。

B.物体移动了一段距离,但在此运动方向上没有受到力的作用(如物体因惯性而运动),此情况叫“不劳无功”。

C.物体既受到力,又通过一段距离,但两者方向互相垂直(如起重机吊起货物在空中沿水平方向移动),此情况叫“垂直无功”。

3.在分析做功情况时还应注意以下几点

A.当物体的受力方向与运动方向不垂直时,这个力就要做功。

B.一个物体同时受几个力的作用时,有一些力做了功,有些力没有做功.因此,讲做功必须指出是哪一个力对哪一个物体做功。

C.什么叫物体克服阻力做功:若物体在运动方向上受到一个与此方向相反的力F的作用,我们通常说物体克服阻力F做了功。

比如:在竖直向上,物体克服重力做功,功的大小为W=Gh; 在水平方向上,物体克服摩擦力做功,功的大小为W=fS。 对公式W=FS的理解

1.公式 一般式 W=FS,

常用式 W=Gh(克服重力做功)或W=f阻S(克服摩擦阻力做功)。 2.单位 焦耳(J) 3.注意事项

A.有力才有可能做功,没有力根本不做功。 B.F与S的方向应在同一直线上。(初中要求)(比如一个人提着一重物G,从山脚顺着一之字形的山路爬到山顶,此时人克服重力做功所移动的距离并不是山路的长,而是从山脚到山顶的高) C.做功的多少,由W=Fs决定,而与物体的运动形式无关。 怎样理解功率的概念

1.物理意义 表示物体做功的快慢。

2.定义 物体在单位时间内所做的功。 3.定义式 P=W/t 4.国际单位 瓦(W) 5.注意事项

A.区别功与功率:功率与功是两个不同的物理量,“功”表示做功的“多少”,而“功率”则表示做功的“快慢”,“多少”与“快慢”的意义不一样,只有在做功时间相同时,做功多的就做功快;否则,做功多,不一定做功就快,即“功率”不一定就大,也就是说:功率与功和时间两个因素有关。

B.由P=W/t变形为P=F·v可知:功率一定时,力F与速度v成反比。

类比法:⑴由两种东西的一部分相似之处,推测其他部分也可能相似。

⑵举例:研究功率时,想到功率表示做功快慢、速度表示运动快慢这一相似性,推测功率在定义、定义式、单位等方面也与速度单位组成相似。 第三部分、机械效率

1.知道利用机械工作时对工作目的物做的功叫有用功;无用而又不得不做的功叫额外功;总功是有用功与额外功之和。

例如:用桶从井中打水。由于工作目的是打水,所以对水做的功是有用功,对桶做的功是额外功,人在整个提水过程中做的功是总功。

2.知道机械效率等于有用功与总功之比,用公式

来表示,其中表示机械效率,W有

表示有用功,W总表示总功。

总小于

,机械效率总小于1。

注意:由于

3.会用公式进行简单计算。

理解机械效率等于有用功与总功之比。对于这一个知识点,应该注意以下几点:

(1)会判断有用功、额外功和总功。知道我们需要的功叫有用功;在工作时,额外负担而不得不做的功叫额外功;总功是有用功与额外功之和。一般情况下,我们根据做功的目的来区分这三种功。

(2)知道增大机械效率的方法。

根据公式可知:如果有用功不变,我们可以通过减小额外功来增大机

械效率,(例如我们用轻便的塑料桶打水,而不用很重的铁桶打水,就是运用这个道理);如果额外功不变,我们可以通过增大有用功来提高机械效率;(例如,在研究滑轮组的机械效率时,我们会发现同一个滑轮组,提起的重物越重,机械效率越高,就是这个道理);当然了,如果能在增大有用功的同时,减小额外功更好。 规律方法指导:

求简单机械的机械效率是初中物理教学的重点内容,也是近年来中考的热点问题。由于计算中涉及到总功、有用功、额外功等抽象概念,特别是滑轮组的机械效率题目中,同一滑轮组在不同负载情况下机械效率不同,有用功在具体情况中的形式不同,隐含条件的渗入,以及特殊形式的滑轮组等等,在学习的过程中常感觉困惑,易造成错解。为了解决这类问题,同学们要搞清楚以下几点:

要对机械效率公式进行归类细化 根据对

、、的具体理解,可以将机械效率的定义式进行如下归类:

(1)在竖直方向上,G是物体重,G动是动滑轮重,h是物体被提升的高度,也是动滑轮被提升的高度。∴

承担力的绳的段数。

,若绳重及摩擦不计,F是拉力,S是拉力F移动的距离,n是动滑轮上

;①②③公式都适合。若是考虑绳重和摩

擦力,用滑轮组把物体提升的高度h,拉力F移动的距离S,总满足S=nh;只可用于①②。

(2)在水平方向上,由于物体是匀速运动,滑轮组对物体的拉力F′与水平地面对物体的摩擦力f是一对平衡力,∴

,即克服水平面对物体摩擦所做的功在数值上是等于

有用功。

(3)在斜面方向上,f是物体与斜面之间的摩擦,L是斜面的长,由于克服斜面对物体摩擦所做的功是额外功, ∴

 

第二篇:简单机械和功知识归纳

简单机械和功

1.杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。

2.什么是支点、动力、阻力、动力臂、阻力臂?

(1)支点:杠杆绕着转动的点(o)

(2)动力:使杠杆转动的力(F1)

(3)阻力:阻碍杠杆转动的力(F2)

(4)动力臂:从支点到动力的作用线的距离(L1)。

(5)阻力臂:从支点到阻力作用线的距离(L2)

3.杠杆平衡的条件:动力×动力臂=阻力×阻力臂.或写作:F1L1=F2L2。这个平衡条件也就是阿基米德发现的杠杆原理。

4.三种杠杆:

(1)省力杠杆:L1>L2,平衡时F1<F2。特点是省力,但费距离。(如剪铁剪刀,铡刀,起子)

(2)费力杠杆:L1<L2,平衡时F1>F2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等)

(3)等臂杠杆:L1=L2,平衡时F1=F2。特点是既不省力,也不费力。(如:天平)

5.定滑轮特点:不省力,但能改变动力的方向。(实质是个等臂杠杆)

6.动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆)

7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。

1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。

2.功的计算:功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。(功=力×距离)

3. 功的公式:W=FS;单位:W→焦;F→牛顿;s→米。(1焦=1牛·米).

4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。

5.斜面:FL=Gh斜面长是斜面高的几倍,推力就是物重的

几分之一。(螺丝、盘山公路也是斜面)

6.机械效率:有用功跟总功的比值叫机械效率。 计算公式:P有/W=η

7.功率(P):单位时间(t)里完成的功(W),叫功率。 计算公式:P=W/t

P→瓦特;W→焦;t→秒。(1瓦=1焦/秒。1千瓦=1000瓦)

 

第三篇:初三物理人教版简单机械知识点总结

人教版简单机械知识点总结

杠杆

一、杠杆

1、定义:一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就叫杠杆。

(1)“硬棒”不一定是棒,泛指有一定长度的,在外力作用下不变形的物体。

(2)杠杆可以是直的,也可以是任何形状的。

2、杠杆的七要素

(1)支点:杠杆绕着转动的固定点,用字母“O”表示。它可能在棒的某一端,也可能在棒的中间,在杠杆转动时,支点是相对固定的。

(2)动力:使杠杆转动的力,用“F1”表示。

(3)阻力:阻碍杠杆转动的力,用“F2”表示。

(4)动力作用点:动力在杠杆上的作用点。

(5)阻力作用点:阻力在杠杆上的作用点。

(6)动力臂:从支点到动力作用线的垂直距离,用“l1”表示。

(7)阻力臂:从支点到阻力作用线的垂直距离,用“l2 ”表示。

注意:无论动力还是阻力,都是作用在杠杆上的力,但这两个力的作用效果正好相反。一般情况下,把人施加给杠杆的力或使杠杆按照人的意愿转动的力叫做动力,而把阻碍杠杆按照需要方向转动的力叫阻力。

力臂是点到线的距离,而不是支点到力的作用点的距离。力的作用线通过支点的,其力臂为零,对杠杆的转动不起作用。

3、杠杆示意图的画法:(1)根据题意先确定

支点O;(2)确定动力和阻力并用虚线将其作用线

延长;(3)从支点向力的作用线画垂线,并用l1和

l2分别表示动力臂和阻力臂。如图所示,以翘棒为例。

第一步:先确定支点,即杠杆绕着哪一点转动,用字母“O”表示。如图甲所示。

第二步:确定动力和阻力。人的愿望是将石头翘起,则人应向下用力,画出此力即为动力用“F1”表示。这个力F1作用效果是使杠杆逆时针转动。而阻力的作用效果恰好与动力作用效果相反,在阻力的作用下杠杆应朝着顺时针方向转动,则阻力是石头施加给杠杆的,方向向下,用“F2”表示如图乙所示。

第三步:画出动力臂和阻力臂,将力的作用线正向或反向延长,由支点向力的作用线作垂线,并标明相应的“l1”“l2”, “l1”“l2”分别表示动力臂和阻力臂,如图丙所示。

1、杠杆的平衡:当杠杆在动力和阻力的作用下静止时,我们就说杠杆平衡了。

2

1

(1)首先调节杠杆两端的螺母,使杠杆在水平位置平衡。如图所示,当杠杆在水平位置平衡时,力臂l1和l2恰好重合,这样就可以由杠杆上的刻度直接读出力臂食物大小了,而图甲杠杆在倾斜位置平衡,读力臂的数值就没有乙方便。由此,只有杠杆在水平位置平衡时,我们才能够直接从杠杆上读出动力臂和阻力臂的大小,因此本实验要求杠杆在水平位置平衡。

(2)在实验过程中绝不能再调节螺母。因为实验过程中再调节平衡螺母,就会破坏原有的平衡。

3、杠杆的平衡条件:动力×动力臂=阻力×阻力臂,或F1l1=F2l2。

杠杆如果在相等时间内能转过相等的角度,即匀速转动时,也叫做杠杆的平衡,这属于“动平衡”。而杠杆静止不动的平衡则属于“静平衡”。

三、杠杆的应用

1、省力杠杆:动力臂l1>阻力臂l2,则平衡时F1<F2,这种杠杆使用时可省力(即用较小的动力就可以克服较大的阻力),但却费了距离(即动力作用点移动的距离大于阻力作用点移动的距离,并且比不使用杠杆,力直接作用在物体上移动的距离大)。

2、费力杠杆:动力臂l1<阻力臂l2,则平衡时F1>F2,这种杠杆叫做费力杠杆。使用费力杠杆时虽然费了力(动力大于阻力),但却省距离(可使动力作用点比阻力作用点少移动距离)。

3、等臂杠杆:动力臂l1=阻力臂l2,则平衡时F1=F2,这种杠杆叫做等臂杠杆。使用这种杠杆既不省力,也不费力,即不省距离也不费距离。

既省力又省距离的杠杆时不存在的。

(一)基本方法

对于滑轮或滑轮组的拉力(F)或机械效率(),一般分为三种状态:

a. 理想状态:即不计滑轮的重()、绳重()、摩擦力(),此时,拉力,机械效率 。b. 半理想状态:只计,不计,此时拉力,机械效率。

c. 实际状态:只计G动、G绳、Gf,,此时拉力,机械效率。

(二)滑轮组打捞问题

如图所示,设动滑轮对重物的拉力为T,绳子自由端的拉力为F,(半理想)则

(1)物体在水中,有

(2)出水前有

(n为动滑轮上绳子的股数)出水后,有 2

(3)物体在水中拉力做的有用功

(4)机械效率:(其中是绳自由端移动的距离,h为物体上升的高度)

(三)“倒下”的滑轮

1. 使用动滑轮,要搞清谁是动力,谁是阻力。当使用动滑轮拉物体在水平面上做匀速直线运动时,设物体与地面间的摩擦力为f,若拉力作用在绳的自由端,有

轴上,有,则可省力一半,如图(a)所示;若拉力作用动滑轮 ,如图(b),这时反而费力。可见,对水平使用动滑轮是否省力,一定要注意动力作用在何处。

2.

绳子的自由端和动滑轮移动的距离关系和速度关系为:的距离、速度,,其中分别指绳的自由端移动分别指动滑轮或物体移动的距离、速度,是指动滑轮上绳子的股数。

3. 当滑轮沿水平方向拉物体时,可忽略动滑轮重。

4. 求机械效率时,有用功一般指克服摩擦阻力做的功,即。

5.在使用滑轮组的整个过程中拉力做功的功率是平均功率。

(四) 根据要求设计滑轮组

(1)根据要求确定动滑轮上绳的段数。

(2)根据绳的段数,确定动滑轮的个数:一个动滑轮可拉2段绳,还能改变用力方向;但也可以拉三段绳,但就不能改变用力方向了。

nn个动滑轮和个定滑轮。穿绳组装时,绳的固定端要固定在滑22

n?1)个定滑轮。 轮下的挂钩上(这叫做“偶定”),若不改变力的方向,还可少用一个定滑轮,即(2

n?1如果n为奇数,则需要个动滑轮和同样数目的定滑轮,穿绳时,绳的固定端要拴在动滑轮上方的挂钩上2

n?1(这叫做“奇动”),这不能改变用力方向,如果还想改变用力方向,就应再加一个定滑轮,即个定滑轮。 2设想如果需要n段绳(n为偶数)那么就需要

上述方法叫“奇动偶定”。

3

6

图7

例5.如图8所示,某打捞队的工人用滑轮组把底面积为

体的密度为,水的密度为、高为2m的实心圆柱体从水下提起,已知圆柱,滑轮组的机械效率是70%。(g取10N/kg,滑轮和绳子的重力忽略不计)求:

(1)圆柱体在水中所受的浮力。

(2)若圆柱体从H=16m深处被缓慢地匀速提起,到刚露出水面时,绳子自由端拉力F所做的功。

(3)如果绕在滑轮组上的绳子能承受的最大拉力为400N,则物体被提到露出水面多高时,绳子恰好被拉断?

图8

图9

4

相关推荐