二次函数知识总结

二次函数

考点一、二次函数的概念和图像 1、二次函数的概念

一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x 的二次函数。

y?ax2?bx?c(a,b,c是常数,a?0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于x??

b

对称的曲线,这条曲线叫抛物线。 2a

抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线y?ax2?bx?c与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。 考点二、二次函数的解析式

二次函数的解析式有三种形式:

(1)一般式:y?ax?bx?c(a,b,c是常数,a?0) (2)顶点式:y?a(x?h)?k(a,h,k是常数,a?0)

2

(3)当抛物线y?ax?bx?c与x轴有交点时,即对应二次好方程ax?bx?c?0

2

2

2

2

有实根x1和x2存在时,根据二次三项式的分解因式ax?bx?c?a(x?x1)(x?x2),二次函数y?ax?bx?c可转化为两根式y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。 考点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最

2

b4ac?b2大值(或最小值),即当x??时,y最值?。

2a4a

如果自变量的取值范围是x1?x?x2,那么,首先要看?

b

是否在自变量取值范围2a

b4ac?b2

时,y最值?;若不在此范围内,则x1?x?x2内,若在此范围内,则当x=?2a4a

需要考虑函数在x1?x?x2范围内的增减性,如果在此范围内,y随x的增大而增大,则当

2

x?x2时,y最大?ax2?bx2?c,当x?x1时,y最小?ax12?bx1?c;如果在此范围内,2y随x的增大而减小,则当x?x1时,y最大?ax1?bx1?c,当x?x2时,2y最小?ax2?bx2?c。

2、二次函数y?ax2?bx?c(a,b,c是常数,a?0)中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上,,, a<0时,抛物线开口向下

b与对称轴有关:对称轴为x=?

b

2a

(0,c) c表示抛物线与y轴的交点坐标:

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的??b?4ac,在二次函数中表示图像与x轴是否有交点。 当?>0时,图像与x轴有两个交点; 当?=0时,图像与x轴有一个交点; 当?<0时,图像与x轴没有交点。 补充:

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

如图:点A坐标为(x1,y1)点B则AB间的距离,即线段AB2

x

2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)

3、直线斜率:

y2?y1 b为直线在y轴上的截距

k?tan??

x2?x1

4、直线方程: 一般两点斜截距

1,一般 一般 直线方程 ax+by+c=0

2,两点 由直线上两点确定的直线的两点式方程,简称两点式:

3,点斜

--最最常用,记牢 知道一点与斜率y?y?k(x?x)

1

1

4,斜截 斜截式方程,简称斜截式: y=kx+b(k≠0)

5 ,截距 由直线在x轴和y轴上的截距确定的直线的截距

式方程,简称截距式:

xy??1 ab

记牢可大幅提高运算速度

5、设两条直线分别为,l1:y?k1x?b1 l2:y?k2x?b2 若l1//l2,则有l1//l2?k1?k2且b1?b2。 若

l1?l2?k1?k2??1

6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: d?

kx0?y0?bk?(?1)

2

2

?

kx0?y0?b

k?1

2

对于点P(x0,y0)到直线滴一般式方程 ax+by+c=0的距离有

二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):

一元二次方程ax2?bx?c?0是二次函数y?ax2?bx?c当函数值y?0时的特殊情况. 图象与x轴的交点个数:

0?,B?x2,0?(x1?x2),① 当??b2?4ac?0时,图象与x轴交于两点A?x1,其中的x1,x2

是一元二次方程ax2?bx?c?0?a?

0?的两根.这两点间的距离 AB?x2?x1?

② 当??0时,图象与x轴只有一个交点;

③ 当??0时,图象与x轴没有交点.

1' 当a?0时,图象落在x轴的上方,无论x为任何实数,都有y?0; 2' 当a?0时,图象落在x轴的下方,无论x为任何实数,都有y?0. 2. 抛物线y?ax2?bx?c的图象与y轴一定相交,交点坐标为(0,c);

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数y?ax2?bx?c中a,b,c的符号,或由二次函数中a,

b,c的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

⑸ 与二次函数有关的还有二次三项式,二次三项式ax2?bx?c(a?0)本身就是所含字母

x的二次函数;下面以a?0时为例,揭示二次函数、二次三项式和一元二次方程之间的

y=-2x2

y=3(x+4)2

y=3x2

2

y=-2(x-3)2

 

第二篇:二次函数知识总结

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系: h=-b4ac?b k=2a4a2x1,x2=?b?b?4ac

2a2

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x2的图像,

可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 bx = -。 2a

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为 b4ac?b2

P [ - , ]。 2a4a

当-b=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。 2a

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b2-4ac>0时,抛物线与x轴有2个交点。

Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

相关推荐