20xx年高考高中生物必修2重点知识归纳总结

第一章遗传因子的发现

第一节孟德尔的豌豆杂交实验(一)

1.孟德尔通过分析 豌豆杂交实验 的结果,发现了 生物遗传 的规律。

2.孟德尔在做杂交实验时,先除去未成熟花的全部雄蕊,这叫做 去雄

3.一种生物的同一性状的不同表现类型,叫做 相对性状

4.孟德尔把F1显现出来的性状,叫做 显性性状 ,未显现出来的性状叫做 隐性性状 。在杂种后代中,同时出现 显性性状 隐性性状 的现象叫做 性状分离

5.孟德尔对分离现象的原因提出了如下假说:

(1)生物的性状是由 遗传因子 决定的,其中决定显现性状的为 显性遗传因子 ,用 大写字母 表示,决定隐性性状的为 隐性遗传因子 ,用 小写字母 表示。

(2)体细胞中的 遗传因子 是成对存在的, 遗传因子 组成相同的个体叫做 纯合子 遗传因子 组成不同的个体叫做 杂合子

(3)生物体在形成生殖细胞——配子时, 成对的遗传因子 彼此分离,分别进入 不同的配子 中,配子中只含有 每对遗传因子 的一个。

(4)受精时, 雌雄配子 的结合是随机的。

6.测交是让 F1 隐性纯合子 杂交。

7.孟德尔第一定律又称 分离定律 。在生物的体细胞中,控制同一性状的 遗传因子 成对存在的,不相融合,在形成配子时,成对的 遗传因子 发生分离,分离后的 遗传因子 分别进入不同配子中,随 配子 遗传给后代。

第一章 第二节 孟德尔的豌豆杂交实验(二)

1.孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆作亲本杂交,无论 正交 还是 反交 ,结出的种子(F1)都是 黄色圆粒 。这表明 黄色 圆粒 是显性性状, 绿色 皱粒 是隐性性状。

2.孟德尔让黄色圆粒的F1自交,在产生的F2中发现了黄色圆粒和绿色皱粒,还出现了亲本所没有的性状组合 绿色圆粒 黄色皱粒

3.纯种黄色圆粒和纯种绿色皱粒豌豆的遗传因子组成分别是YYRR和yyrr,它们产生的F1遗传因子组成是 YyRr ,表现为 黄色圆粒

4.孟德尔两对相对性状的杂交实验中,F1(YyRr)在产生配子时,每对遗传因子彼此 分离 ,不同对的遗传因子可以 自由组合 。F1产生的雌配子和雄配子各有4种: YR、Yr、yR、yr ,数量比例是: 1:1:1:1 。受精时,雌雄配子的结合是 随机 的,雌、雄配子结合的方式有 16 种,遗传因子的结合形式有 9 种: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr 。性状表现有 4 种: 黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒 ,它们之间的数量分比是 9:3:3:1

5.让子一代F1(YyRr)与隐性纯合子(yyrr)进行杂交,无论是F1 母本 ,还是作 父本 ,后代表现型有 4 种: 黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒 ,它们之间的比例是9:3:3:1 ,遗传因子的组合形式有 9 种: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr

6.孟德尔第二定律也叫做 自由组合定律 ,控制不同性状的遗传因子的 分离 组合 是互不干扰的,在形成配子时,决定 同一性状 的遗传因子彼此分离,决定 不同性状的遗传因子 自由结合。

第二章 基因与染色体的关系

第一节 减数分裂与受精作用

1.减数分裂是进行 有性生殖 的生物在产生 成熟生殖细胞 时,进行的染色体数目 减半 的细胞分裂。在减数分裂过程中,染色体只复制 一次 ,而细胞分裂 两次 ,减数分裂的结果是 成熟生殖细胞 中的染色体数目比 原始生殖的细胞 的减少一半。

2.精原细胞是 原始 的雄性生殖细胞,每个体细胞中的染色体数目都与 体细胞 的相同。

3.在减数第一次分裂的间期,精原细胞的体积增大,染色体复制,成为初级精母细胞,复制后的每条染色体都由两条 姐妹染色单体 构成,这两条 姐妹染色单体 由同一个 着丝点 连接。

4.配对的两条染色体,形状和大小一般都相同,一条来自 父方 ,一条来自 母方 ,叫做 同源染色体 同源染色体 两两配对的现象叫做联会。

5.联会后的每对同源染色体含有四条 染色单体 ,叫做 四分体

6.配对的两条同源染色体彼此分离,分别向细胞的两极移动发生在 减数第一次分裂 时期。

7.减数分裂过程中染色体的减半发生在 减数第一次分裂

8.每条染色体的着丝点分裂,两条姐妹染色体也随之分开,成为两条染色体发生在 减数第二次分裂 时期。

9.在减数第一次分裂中形成的两个次级精母细胞,经过减数第二次分裂,形成了四个 精细胞 ,与初级精母细胞相比,每个精细胞都含有数目 减半 的染色体。

10.初级卵母细胞经减数第一次分裂,形成大小不同的两个细胞,大的叫做 次级卵母细胞 ,小的叫做 极体 次级卵母细胞 进行第二次分裂,形成一个大的 卵细胞 和一个小的 极体 ,因此一个初级卵母细胞经减数分裂形成一个 卵细胞 和三个 极体

11.受精作用是 卵细胞 精子 相互识别,融合成为 受精卵 的过程。

12.经受精作用受精卵中的染色体数目又恢复到 体细胞 中的数目,其中有一半的染色体来自 精子(父方),另一半来自 卵细胞(母方)

二、减数分裂的过程

1、精子的形成过程精巢(哺乳动物称睾丸

  

减数第一次分裂

间期:染色体复制(包括DNA复制蛋白质的合成)。

前期:同源染色体两两配对(称联会),形成四分体。四分体中的非姐妹染色单体之间常常发生对等片段的互换

中期:同源染色体成对排列在赤道板上(两侧)。

后期:同源染色体分离;非同源染色体自由组合

末期:细胞质分裂,形成2个子细胞。

减数第二次分裂(无同源染色体)

前期:染色体排列散乱

中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。

后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极

末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。


2 、卵细胞的形成过程: 卵巢

三、减数分裂与有丝分裂图像辨析步骤:

一看染色体数目:奇数为减Ⅱ(姐妹分家只看一极)

二看有无同源染色体:没有为减Ⅱ(姐妹分家只看一极)

三看同源染色体行为:确定有丝或减Ⅰ

注意:若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。

同源染色体分家—减Ⅰ后期    姐妹分家—减Ⅱ后期

第二章 第二节 基因在染色体上

1.基因与染色体行为存在着明显的平行关系。

(1)基因在杂交过程中保持 完整性 独立性 ,染色体在配子形成和受精过程中,也有相对稳定的 形态结构

(2)在体细胞中基因 成对 存在,染色体也是 成对 的。在配子中基因只有 一个 ,同样,染色体也只有 一条

(3)体细胞中成对的基因一个来自 父方 ,一个来自 母方 ,同源染色体也是如此。

2.美国生物学家 摩尔根 和他的学生们经过十多年的努力,发现了说明基因位于 染色体 上的相对位置的方法,并绘出了第一个果蝇各种基因在 染色体 上相对位置图,说明基因在 染色体 上呈 线性 排列。

3.基因分离定律的实质是:在杂合体的细胞中,位于一对同源染色体上的 等位基因 ,具有一定的 独立性 ,在分裂形成配子的过程中, 等位基因 会随同源染色体分开而分离,分别进入两个配子中,独立地随配子遗传给后代。

4.基因自由组合定律的实质是:位于非同源染色体上的 非等位基因 的分离或组合是互不干扰的,在减数分裂过程中,同源染色体上的 等位基因 彼此分离的同时,非同源染色体上的 非等位基因 自由组合。

第二章 第三节  伴性遗传

1.位于性染色体上的 基因 控制的性状在遗传上总是和 性别 相关联,这种现象叫做 伴性遗传

2.伴X隐性遗传的遗传特点:

  (1)隐性致病基因及其等位基因只位于 X 染色体上。

  (2)男性患者 多于 女性患者。

  (3)往往有 隔代 遗传现象。

  (4)女患者的 儿子 一定患病。(母病子必病)

3.伴X显性遗传的遗传特点:

  (1)显性的致病基因及其等位基因只位于 X 染色体上。

  (2)女性患者 多于 男性患者。

  (3)具有世代连续性。

  (4)男患者的 女儿 一定患病。(父病女必病)

第三章基因的本质

第一节DNA是主要的遗传物质

1.染色体是由 DNA 和蛋白质组成的,其中 DNA 是一切生命现象的体现者。在有丝分裂、 受精作用 减数分裂 过程中具有重要的连续性。

2.DNA是遗传物质的证据是 肺炎双球菌的转化 实验和 噬菌体侵染细菌 实验。

3.肺炎双球菌的转化试验:

  (1)实验目的: 证明什么事遗传物质

  (2)实验材料: S型细菌、R型细菌

  (3)过程: R 型活细菌注入小鼠体内小鼠不死亡。

              S 型活细菌注入小鼠体内小鼠死亡。

杀死后的 S 型细菌注入小鼠体内小鼠不死亡。

无毒性的 R 型细菌与加热杀死的 S 型细菌混合后注入小鼠体内,小鼠死亡。

从S型活细菌中提取 DNA 、蛋白质和多糖等物质,分别加入R型活细菌中培养,发现只有加入 DNA ,R型细菌才能转化为S型细菌。

  (4)结果分析:①→④过程证明:加热杀死的S型细菌中含有一种“转化因子”;⑤过程证明:转化因子是 DNA

   结论: DNA 是遗传物质。

4.噬菌体侵染细菌的实验:

  (1)实验目的: 噬菌体的遗传物质是DNA还是蛋白质

  (2)实验材料: 噬菌体

  (3)过程: T2噬菌体的 蛋白质 35S标记,侵染细菌。

             T2噬菌体内部的 DNA 32P标记,侵染细菌。

  (4)结果分析:测试结果表明:侵染过程中,只有 DNA 进入细菌,而35S未进入,说明只有亲代噬菌体的 DNA 进入细胞。子代噬菌体的各种性状,是通过亲代的 DNA 遗传的。 DNA 才是真正的遗传物质。

5.RNA是遗传物质的证据:

  (1)提取烟草花叶病毒的 蛋白质 不能使烟草感染病毒。

  (2)提取烟草花叶病毒的 RNA 能使烟草感染病毒。

6.结论 :绝大多数生物的遗传物质是 DNA  , DNA 是主要的遗传物质 。极少数的病毒的遗传物质不是 DNA ,而是 RNA

第三章 第二节 DNA的分子结构

1.DNA是一种 高分子 化合物,每个分子都是由成千上百个 4 种脱氧核苷酸聚合而成的长链。

2.结构特点:由两条脱氧核苷酸链 反向 平行盘旋而成的 双螺旋 结构。

             外侧:由 脱氧核糖 磷酸 交替连接构成基本骨架。

             内侧:两条链上的碱基通过 氢键连接 形成碱基对。碱基对的形式遵循 碱基互补配对原则 ,即A一定要和 T 配对(氢键有 2 个),G一定和 C 配对(氢键有 3 个)。

3.双链DNA中腺嘌呤(A)的量总是等于 胸腺嘧啶(T)的量.鸟嘌呤(G)的量总是等于 胞嘧啶(C)的量。

第三章 第三节  DNA的复制

1.DNA的复制概念:是以 亲代DNA 为模板合成 子代DNA 的过程。

2.时间:DNA分子复制是在细胞有丝分裂的 间期 和减数第一次分裂的 间期 ,是随着 染色体 的复制来完成的。

3.场所: 细胞核

4.过程:

  (1)解旋:DNA首先利用线粒体提供的 能量 解旋酶 的作用下,把两条螺旋的双链解开。

  (2)合成子链:以解开的每一段母链为 模板  ,以游离的四种脱氧核苷酸为原料 ,遵循 碱基互补配对 原则,在有关酶的作用下,各自合成与母链互补的子链。

  (3)形成子代DNA:每一条子链与其对应的 模板 盘旋成双螺旋结构,从而形成 2 个与亲代DNA完全相同的子代DNA。

5.特点:

  (1)DNA复制是一个边解旋边复制的过程。

  (2)由于新合成的DNA分子中,都保留了原DNA的一条链,因此,这种复制叫半保留复制

6.条件:DNA分子复制需要的模板是 DNA母链 ,原料是 游离的脱氧核酸 ,需要能量ATP和有关的酶。

7.准确复制的原因:

  (1)DNA分子独特的 双螺旋结构 提供精确的模板。

  (2)通过 碱基互补配对 保证了复制准确无误

8.功能:传递 遗传信息 。DNA分子通过复制,使亲代的遗传信息穿给子代,从而保证了 遗传信息 的连续性

第三章 第四节 基因是有遗传效应的DNA片段

1.一条染色体上有 1 个DNA分子,一个DNA分子上有 许多 个基因,基因在染色体上呈现 线形 排列。每一个基因都是特定的 DNA 片段,有着特定的 遗传效应 ,这说明DNA中蕴涵了大量的 遗传信息

2.概念:DNA分子上分布着多个基因,基因是具有 遗传效应的DNA 片段,是决定生物性状的 遗传单位

3.结构:基因的 脱氧核苷酸 排列顺序,即碱基对的排列顺序。不同的基因含有不同的 遗传信息

4.DNA能够储存足够量的遗传信息,遗传信息蕴藏在 4种碱基的排列顺序 之中,构成了DNA分子的 多样性 ,而碱基的特定的排列顺序,又构成了每一个DNA分子的 特异性

第四章 基因的表达

第一节  基因指导蛋白质的合成

1.RNA是在细胞核中,以 DNA的一条链 为模板合成的,这一过程称为 转录 ;合成的RNA有三种: 信使RNA(mRNA) 转运RNA(tRNA) 核糖体RNA(rRNA)

2.RNA与DNA的不同点是:五碳糖是 核糖而不是脱氧核糖 ,碱基组成中有 碱基U(尿嘧啶)而没有T(胸腺嘧啶);从结构上看,RNA一般是 单链 ,而且比DNA短。

3.翻译是指游离在细胞质中的各种 氨基酸 ,以 mRNA为模板,合成具有一定氨基酸顺序的 蛋白质 的过程。

4.mRNA上3个相邻的碱基决定一个氨基酸。每3个这样的碱基称为1个 密码子

5.蛋白质合成的“工厂”是 细胞质 ,搬运工是 转运RNA(tRNA) 。每种tRNA只能转运并识别 1 种氨基酸,其一端是 携带氨基酸 的部位,另一端有3个碱基,称为 反密码子

第四章 第二节  基因对性状的控制

1.1957年,克里克提出中心法则 :遗传信息可以从 DNA 流向 DNA  ,即DNA的自我复制 ;也可以从 DNA流向 RNA ,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从 蛋白质 传递到 蛋白质 ,也不能从蛋白质流向 RNA或DNA

2.基因通过控制的合成来控制代谢过程,进而控制生物体的性状。

3.基因还能通过控制 蛋白质的结构 直接控制生物体的性状。

4.基因与基因、 基因与基因产物 、基因与环境之间存在着复杂的相互作用,精细的调控着生物体的性状。

第五章  基因突变及其他变异

第一节 基因突变和基因重组

1.DNA分子中发生碱基对的 替换、增添和缺失 ,而引起的基因结构的改变叫基因突变。

2.基因突变有如下特点:在生物界普遍存在, 随机发出的、不定向的 ,频率很低。

3.基因突变的意义在于:它是 新基因 产生的途径,是 生物变异 的根本来源,是 生物进化 的原材料。

4.基因重组是指 在生物体进行有性生殖的过程中,控制不同形状的基因的重 新组合

第五章 第二节  染色体变异

1.染色体变异包括 结构 变异和 数目 变异。

2.染色体结构的改变,会使排列在染色体上的基因的数目或排列顺序发生改变,从而导致性状的变异。

3.染色体数目变异可分为两类:一类是 细胞内个别染色体的增加或减少 ,另一类是 细胞内染色体数目以染色体组的形式成倍地增长或减少

4.染色体组是指细胞中的一组 非同源 染色体,在形态和功能上各不相同,携带着控制生物生长发育的全部遗传信息

5.人工诱导多倍体最常用而且最有效的方法是用 秋水仙素来处理萌发的种子或幼苗 ,其作用机理是能抑制 纺锤体 的形成,导致染色体不能移向细胞两极,染色体完成了复制但不能 减半 ,从而引起细胞内染色体数目加倍

6.单倍体是指 体细胞中含有本物种配子染色体数目 的个体,在生产上常用于 培育纯种

第五章 第三节  人类遗传病

1.人类遗传病通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病 多基因遗传病 染色体异常遗传病 三大类。

2.单基因遗传病是指受 1 对等位基因控制的遗传病,可能由性致病基因引起,也可能由性致病基因引起。

如:显性--多指、并指、软骨发育不全、抗维生素D佝偻病  隐形—镰刀形细胞贫血症、白化病、先天性聋哑、苯丙酮尿症

3.多基因遗传病是指受 2 对以上的等位基因控制的遗传病,主要包括一些 先天性发育异常 和一些常见病,在群体中的发病率较高。

如:原发性高血压、冠心病、哮喘病、青少年型糖尿病

4.染色体异常遗传病由染色体异常引起,如 21三体综合征 ,又叫先天性愚型,患者比正常人多了一条21号染色体,是由于 减数分裂 时21号染色体不能正常分离而形成。

第六章  从杂交育种到基因工程

第一节 杂交育种与诱变育种

第六章 第二节 基因工程及其应用

1.基因工程又叫 基因拼接技术 DNA重组技术 。通俗地说,就是按照人们的意愿把一种生物的 某种基因 提取出来,加以 修饰改造 ,然后放到 另一种生物的细胞里 定向 地改造生物的遗传技术。

2.基因工程最基本的操作工具是基因的剪刀即 限制性核酸内切酶 (简称 限制酶 );基因的针线即 DNA连接酶 ;基因的运载体常用 质粒 噬菌体 动植物病毒 等。

3.基因工程的操作一般经历四个步骤 目的基因的获取 基因表达载体的构建 将目的基因导入受体细胞 目的基因的表达和检测

第七章 现代生物进化理论

第一节 现代生物进化理论的由来

1.历史上第一个提出比较完整的进化学说的是法国的博物学家 拉马克 。他的基本观点是地球上所有的生物都不是 神造的 ,而是由 更古老的生物进化 来的;生物是由 低等 高等 逐渐进化的;生物的各种适应性特征的形成都是由于 用进废退 获得性遗传 用进废退和获得性遗传 ,这是生物不断进化的主要原因。

2.达尔文提出了以 自然选择 为中心的进化论,它揭示了生命现象的统一性是由于 所有的生物都有共同的祖先 ,生物的多样性是 进化 的结果。

3.由于受到当时科学发展水平的限制,达尔文不能解释 遗传和变异 ;他对生物进化的解释也仅限于 个体水平

第七章 第二节 现代生物进化理论的主要内容

1.现代生物进化理论的主要内容包括:

  (1) 种群是生物进化的基本单位

  (2) 突变和基因重组产生进化的原材料

  (3) 自然选择决定生物进化的方向

  (4) 隔离导致新物种的形成

2.种群是生活在一定区域中的 同种生物的全部个体

3.种群的基因库是该种群中 全部个体所含有的全部基因

4.可遗传的变异来源于 基因突变 基因重组 染色体变异 ,其中 基因突变 染色体变异 统称为突变。基因突变产生新的 等位基因 ,就可能使种群的基因频率发生变化。 突变和重组 提供了生物进化的原材料。

5.在自然选择的作用下,种群的基因频率会发生 定向 改变,导致生物朝着 一定 的方向不断进化。

6.物种是能够在自然状态下 相互交配 并且 产生可育后代 的一群生物。

7.隔离是 不同种群 的个体,在自然条件下 基因不能自由交流 的现象。常见的隔离有 生殖隔离 地理隔离

8.生殖隔离即不同物种之间一般是 不能相互交配 的,即使 交配成功 也不能 产生可育后代

9.地理隔离即同一种生物由于 地理上的障碍而分成不同的种群,使得种群间不能发生基因交流 的现象。

10.共同进化是指 不同物种 之间、 生物与无机环境 之间在相互影响中不断进化和发展。

11.生物多样性包括三个层次的内容: 基因 多样性、 物种 多样性和 生态系统 多样性。

相关推荐